VOLCANO NEWS

Updated on September 17th, 2021 (latest news classified according to countries)

Highlight today : the effusive eruption of Fagradalsfjall / Geldingadalur continued in Reykjanes peninsula (Iceland) - Alert level had been lowered at the Soufriere of Saint Vincent (West Indies)

Seismic activity is still continuing at The Cumbre Vieja (La Palma-Canary Islands) - New lava dome is growing in the Nevado de Chillan crater ( Chile) -

 

Saint Vincent - Soufriere volcano (West-Indies)

September 17th, 2021

As of the 16th of September; the alert level of the volcano La Soufrière de St. Vincent has been lowered to YELLOW. A Yellow alert level means that the volcano is agitated, that the seismic or fumarolic activity is higher than the historical level of the volcano. Activities on the volcano have been weak and significantly reduced in recent months since the last explosive eruption on April 22, 2021. All the communities that evacuated following the evacuation order given on April 8, 2021 can now return to their homes. Access to the top of the volcano remains restricted.As of the 14th of September, UWI-SRC reported that Seismic activity at La Soufrière, St Vincent has remained low since the tremor associated with the explosion and ash venting on 22 April.No lahar signals have been observed and work has been completed on all seismic stations As of the 30th of August, UWI-SRC reported that over the past week, there has been a slight increase in magnitude, but this has provided no indication of reactivation. Current activity corresponds to a period of unrest after a rash. This can last for weeks or even months. While volcanic activity is on the decline, there is the continued presence of hot spots near the surface, daily seismic activity, and persistent outgassing. Lahar signals were observed: 4 on August 24, and 1 on August 25, related to the precipitation that was recorded during this period. Clear weather conditions at the volcano on August 30 allowed excellent views of the crater and observations indicate that no major changes have occurred in the crater since the end of explosive activity on April 22. As of the 28th of August, UWI-SRC reported that current activity corresponds to a period of unrest after an eruption. This can last for weeks or even months. Heavy rains over the past week-end resulted n lahars in most of the valleys on the volcano. These were all flows very similar incharacteristics to a swollen river. On Aug 15, vigorous steaming accompanied a period of heavy rainfall. These observations are in keeping with the continuedpresence of near surface hot spots within the crater and are not a sign of an explosive eruption occurring. Measurements of the sulphur dioxide (SO2) flux at La Soufrière were carried out by boat off the West coast on 10 August, with the assistance of the coast guard. Several traverses were completed and yielded an average SO2 flux of 205 tons per day. While volcanic activity is on the decline, there is the continued presence of hot spots near the surface, daily seismic activity, and persistent outgassing. Sulfur dioxide flow measurements at La Soufrière were taken by boat off the west coast on August 3, with help from the coast guard. Several crossings were made and gave an average SO2 flow of 207 tonnes per day.As of the 5th of August, UWI-SRC reported that In the last 24 hours, only a few small earthquakes have been recorded. Persistent steam emissions from a few regions inside the crater. Measurements of the sulphur dioxide flux at La Soufrière were carried out by boat off the west coast on 22 July, with the assistance of the coast guard. Several traverses were completed and yielded an average SO2 flux of 233 tons per day. Recent mapping confirmed that no new lava dome formed as a result of the explosions that ended on the 22 April 2021, and the average characteristics inside the new crater (including the crater itself) are all the result of the explosive phase of the eruption between April 9 and 22, 2021. Mapping has identified several prominent fumaroles that are the source of the vapor and gas plumes visible above the rim of the summit crater on a clear day. The presence of fumaroles also confirms the detection of thermal anomalies inside the new crater by the satellites. As of the 6th of July UWI-SRC reported that seismic activity at La Soufrière, St Vincent has remained low. In the last 24 hours, only a few small earthquakes have been recorded. Persistent steam emissions from a few regions inside the crater continue to be the dominant observable feature. Measurement of the sulphur dioxide (SO2) flux was carried out by helicopter on June 23rd and yielded an average SO2 flux of 683 tons per day. SO2 can be an indicator that fresh magma from a deeper source is being degassed. As of the 18th of June, UWU-SRC reported that persistent steam emissions from a few regions inside the crater continue to be the dominant observable feature. As o the 15th oj June seismic activity at La Soufrière, St Vincent has remained low since the tremor associated with the explosion and ash venting on 22 April and in the last 24 hours, only a few small earthquakes have been recorded.Thermal anomalies continue to be detected but do not indicate an explosive event is imminent. As of the 12th of June a photo taken by Prof. Robsertson shows now look of the Crater with 1979 crater rim, the 2021 new explosion crater rim, and the lake. There are several hydrothermal vents and these are responsible for the vapor that can be seen on most days. The alert is still in Orange and access to the volcano is still prohibited for the moment. UWI-SRC noted that with the start of the rainy season, the main danger at Soufrière de St Vincent remains the risk of lahars. Several lahars were reported between 5th to 7th of June.No change reported during the last 24 h regarding previous news. As of the 3rd of June, UWI-SRC reported that in the last 24 hours, only a few long-period.earthquakes have been recorded. Persistent steaming is observable from the observatory once the cloud cover is high enough. Thermal anomalies continue to be detected but do not indicate an explosive event isimminent Measurement of the sulphur dioxide (SO2) flux was carried out off the west coast on June 1st and 3rd and yielded an average SO2 flux of 543 and 456 tons per day, respectively. As of the 2nd of June UWI-SRC reported that the volcano is still in a state of unrest and access is prohibited at this time. Seismic activity at La Soufrière, St Vincent has remained low since the tremor associated with the explosion and ash venting on 22 April. From 5:40am on 30 May to 8:00am (local time) on 31 May, there has been no recorded seismicity associated with La Soufrière. Persistent steaming is observable from the observatory once the cloud cover is high enough. Thermal anomalies continue to be detected by the NASA. As of the 28th of May, UWI-SRC reported that a persistent vapor was observable from the observatory once the cloud cover is sufficiently high. Thermal anomalies continue to be detected by the NASA FIRMS alert system. These have persisted since the explosion of April 22. They indicate that there is a heat source in the crater and most likely originate from a small body of magma remaining, near the bottom of Summit Crater. The volcano continues to be in a state of unrest. Escalation of activity can still take place with little or no warning. The volcano is at Orange alert level.As of the 26th of may, UWI-SRC reported that seismic activity at La Soufrière, St Vincent has remained low since the tremor associated with the explosion and ash venting on 22 April. Persistent steaming is observable from the observatory once the cloud cover is high enough. Measurements of the sulphur dioxide (SO2) flux were done on 20 May and yielded an average SO2 flux of 461 tons per day. UWI-SRC reported that on 12th of May, In the last 24 hours, seismic activity was limited to a few long-period earthquakes. Gas measurements on May 11 yielded an average SO2 flux of 252 tons per day. The volcano continues to be in a state of unrest.As of the 10th of May, UWI-SRC reported that in the last 24 hours, only a few long-period earthquakes have been recorded. Measurements of the sulphur dioxide flux at La Soufrière were carried out by boat off the west. coast yesterday (9 May) with the assistance of the coastguard. Several traverses were completed and yielded an average SO2 flux of 208 tons per day. The volcano continues to be in a state of unrest. Escalation in activity can still take place with little or no warning. As of the 7th of may, UWI-SRC reported that seismic activity remained low. No earthquakes have been recorded in the last 24 hours. A small lahar signal was observed at 7:40am on the morning. As of the 6th of May, UWI-SRC reported that the volcano continues to be in a state of turmoil. The government of Saint Vincent and the Grenadines has lowered the volcanic alert level at La Soufrière to ORANGE based on a recommendation from the University of the West Indies Seismic Research Center. As of the 5th of May, UWI-SRC reported that In the last 24 hours, only a few long-period, hybrid and volcano-tectonic earthquakes have been recorded and there was no further seismic tremor. As of the 2nd of May - 6pm - UWI-SRC reported that in the past 24 hours, only a few long-period hybrid and volcano-tectonic earthquakes have been recorded and there have been no further earthquakes. The seismic stations recorded the signals from small lahars around 1 a.m. and 8:30 a.m., in the red and orange areas. The volcano continues to be in a state of unrest. As of the 30th, UWI-SRC reported that activity has remained low. As of the 29th of April, UWI-SRC reported that in the last 24 hours, only a few long-period, hybrid and volcano-tectonic earthquakes have been recorded and there was no further tremor. The seismic stations recorded signals from multiple lahars during a 12-hour period starting at 9pm on 28 April. Lahars seem to have taken place in all the valleys that drain from La Soufrière and caused considerable erosion and damage.As of the 28th of April - 6mp UWI-SRC reported that in the last 24 hours, only a few long-period, hybrid and volcano-tectonic earthquakes have been recorded and there was no further tremor. The volcano continues to be in a state of unrest. As of the 27th - 6pm - UWI-SRC reported that explosions at La Soufriere in St. Vincent have greatly diminished. Seismic activity remained low with only a few long-period hybrid and volcano-tectonic earthquakes recorded and there was no sign of a tremor. Signals of several lahars (mudslides) were recorded between 9 and 10 a.m. on April 27, during and after a period of rain.An observation flight took place on April 26 at around 11:30 am Visibility was poor with clouds blocking the crater most of the time. However it was possible to see white vapor escaping almost continuously from several places on the bottom of the crater. No dome was visible, although a spine could be seen through the cloudsAs of the 25th (6pm) UWI-SRC reported that seismic activity low since the tremor associated with the explosion and ash venting around noon on 22 April.In the last 24 hours, only a few long-period, hybrid and volcano- tectonic earthquakes have been recorded and there was no further tremor. Satellite radar imagery acquired on 24th April indicates probable continued growth or formation of a lava dome following the xplosions on 18 and 22 April. As of the 24th of April UWI-SRC reported that the volcano continues to erupt. Its pattern of seismic activity over the last few days is typical ofthe growth and destruction of lava domes. As of the 23rd of April 6pm, UWI-SRC reported that seismic activity at La Soufrière, St Vincent has been low after the tremor associated with the explosion and ash venting around noon on 22 April. Only a few long-period, hybrid and volcano-tectonic earthquakes were recorded and there was no further tremor.The seismic network recorded signals from multiple lahars (mudflows) at about 9 pm on 22 April. The locations of these lahars have not been only determined.Measurements of sulphur dioxide flux (mass) at La Soufriere volcano was again undertaken along the west coast today with the assistance of the coastguard. An average SO2 flux of 992 tons per day was recorded. As of the 22nd of April, UWI-SRC reported that small long-lived and hybrid earthquakes continued to be recorded, their rate of occurrence gradually increasing on April 22. The high-level seismic tremor began at 11:09 a.m., generated by explosive activity, and lasted for approximately 20 minutes. A vertical explosive eruption plume slowly rose above the crater, eventually reaching a height of around 8,000 meters During the initial stages of the explosion, a base surge (pyroclastic density current, PDC) was observed descending the western flank of the volcano. The tremor continued, at a lower level, for the next two hours as La Soufrière continued to evacuate ash. As of the 21st of April, UWI-SRC reported that seismic activity of the Soufrière of St. Vincent continued the pattern established after the explosive activity of April 18. The agricultural sector of Saint Vincent and the Grenadines has been severely affected by the eruptions of the Soufrière volcano. Preliminary evaluations reveal that in the red zone, 100% of vegetable crops and 60% of arrowroot (dictame) have been lost. The weight of the heavy ash fall caused the leaves and branches of many tree crops to break. About 90% of tree crops and 80% of root crops would also be damaged in the red zone. The cattle, which were left in the wild, are now without fodder as their pastures have also been totally destroyed by ash and dust. Small, long-lived and hybrid earthquakes continued to be recorded, their rate of occurrence gradually increasing over the past 24 hours.As of the 20th of April - 6pm UWI-SRC reported that the volcano continues to erupt. Its pattern of seismic activity over the last few days is typical ofhe growth and destruction of lava domes. easurements yielded an average SO2 flux of 350 tons per day. No seismic tremor has been recorded in the last 12 hours.UWI-SRC reported that swarm of long-lived and hybrid earthquakes continues, with no significant change in their frequency of occurrence. Occasional small volcano-tectonic earthquakes were still recorded. Its pattern of seismic activity over the past few days is typical of the growth and destruction of lava domes. An explosion generated a high level tremor period starting at 4 p.m. 49 April 18. The resulting eruption plume rose over 8 km and drifted south and southwest of the island. An average SO2 flux of 232 and 391 tonnes per day, on April 17 and 18, respectively, was recorded. As of the 17th of April, the swarm of long-period and hybrid earthquakes continued at La Soufrière. The rate of occurrence of these earthquakes dropped significantly at about 8 pm on 16 April and has remained near-constant since. No episodes of tremor have been recorded in the lhe crater is thought to be at least 100 m deep (Raphael Grandin, IPGP) and is centred in the SW sector of theast 12 hours. A revised picture has been constructed of the summit crater based on satellite images. The new crater, measures approximately 900 m N to S and at least 750 m E to W pf the. Summit Crater. As of the 16th of April, UWI-SRC reported that seismic activity at La Soufrière in St. Vincent has changed in appearance and continues with a constant swarm of LP and hybrid earthquakes, interspersed with brief low-level tremor episod. Sulfur dioxide flux measurements at La Soufrière were again undertaken along the west coast, giving an average SO2 flux of 460 tonnes per day. The presence of sulfur dioxide indicates that fresh magma is degassing from a deeper source ... the eruption continues, despite a pause in explosive activity.es. There was a high-level tremor episode at 6:15 a.m., which lasted about three minutes, followed by over two hours of low-level tremor generated by explosive activity and ventilation. SCIENTIFIC UPDATE - 15/04/21 6:00AM -  Seismic activity at La Soufrière continued to follow the established pattern with bands of tremor about between 13 and 15 hours apart separated by swarms of small long-period earthquakes. The latest band of tremor started at about 2:30 am and was associated with increased venting. The volcano continues to erupt explosively and has now begun to generate pyroclastic density currents - hot (200°C-700°C), ground-hugging flows of ash and debris. Its current pattern of explosions appears to be episodic (stop-start) with increasing periods between eruptions and less energy. Explosions and accompanying ashfall, of similar or larger magnitude, are likely to continue to occur over the next few days impacting St. Vincent and neighbouring islands.SCIENTIFIC UPDATE - 14/04/21 6:00AM - Seismic activity at La Soufrière, St Vincent showed a similar pattern to yesterday. Small long-period earthquakes continued to gradually increase in number after the explosive activity at 6:30am on 13 April. These continued until another episode of explosive activity started at 8:30 pm on 13 April. This generated continuous seismic tremor which lasted for four to five hours. 5. After the tremor had died down, small, long-period earthquakes were again recorded, again slowly growing in numbers. The explosions which occurred pulsed for >40 minutes and produced pyroclastic density currents (PDCs) which, appear to have gone down valleys that drain towards the Rabacca River on the east coast of the island. PDCs are hot (200°C-700°C), ground-hugging flows of ash and debris. Lahars (mudflows) were reported in the Sandy Bay Area on 13 April. The volcano continues to erupt explosively and has now begun to generate pyroclastic density currents. Its current pattern of explosions appears to be episodic (stop-and-go). Over the past 24 hours the time between each explosion has increased. Explosions and accompanying ashfall, of similar or larger magnitude, are likely to continue to occur over the next few days impacting St. Vincent and neighbouring islands such as Barbados, Grenada, Saint Lucia.  The volcano is at alert level Red. UWI-SRC reported that seismic activity changed with the explosive activity at 6.30am on April 13th. Prior to the explosion, long-period (LP) earthquakes had increased in number. The explosions of  La Soufrière pulsed for about 30 minutes and produced pyroclastic density currents that reached the sea at the mouth of the Wallibou about 6 km from the volcano and which extended out to sea, according to observers. Observations made during the afternoon show that the pyroclastic flows reached the sea from all the valleys between Larikai and Wallibou. As of the 12th - 6pm - UWI-SRC reported that pattern of seismic activity changed again, with the end of the episodes of high-amplitude tremor 2-8 hours apart.Three episodes of tremor have been recorded since 6am, two of them lower-amplitude and the third, at about 5pm, was high-amplitudeThe episodes continue to coincide with periods of enhanced. A reconnaissance of the entire north coast of St. Vincent from Chateaubelair to Georgetown with assistance from the Coast guards.Observations made indicate that pyroclastic density currents western flanks of the volcano and had reached the sea at Morne onde, Larikai and Trois Loupes Bay.Extensive damage to vegetation was noted in an area extending rom Larikai Bay to Turner Bay on the west coast.No other areas along the coast had been affected by PDCs but villages located on the eastern flank of the volcano had been ffected by heavy ashfall.Explosions and accompanying ashfall, of similar or larger magnitude, are likely to continue to occur over the next few days. UWI-SRC reported that the day of April 12 eruptive activity was marked by a huge explosions at 4:15 am, which was accompanied by a plume of ash and gas reaching an altitude of 17-18 km., And density currents. pyroclastic descending several valleys on the southern and western flanks of the volcano. They reached the sea at Morne Ronde, Larikai and Trois Loupes Bay and caused extensive damage to vegetation. The amplitude of the tremor has changed since April 11 around noon, with a lengthening of the time between high amplitude episodes at 5-8 hours; Around 6 p.m. on April 11, small volcano-tectonic earthquakes were recorded. On April 12, 3 episodes of tremor were recorded for 6 hours, coinciding with periods of explosive activity or increased venting. UWI-SRC - La Soufriere Eruption Scientific Update 11/04/21 at 9am : in the last twelve hours episodes of tremor normally lasting up to 20 minutes have continued to be recorded.The intervals between the tremors have been between 1.5 to 3 hours. Based on visual observations and satellite imagery, the intervals are associated with periods of explosive activity or enhanced venting.Thunder and lightning were experienced during these periods. Heavy ash fall was observed at the Belmont Observatory throughout the night.Ashfall was also reported to have occurred in most areas of the island overnight and in neighbouring islands: the Grenadines, Barbados and Saint Lucia. Explosions and accompanying ashfall, of similar or larger magnitude, are likely to continue to occur over the next few days. UWI-SRC reported that aAfter the initial explosion of La Soufrière in St. Vincent at 8:41 am on 9th of April, which was accompanied by a plume of ash and gas with an estimated height of 10,000 meters (Dr. Robertson), the seismicity rose again around 11:30 a.m., as a seismic swarm that ended at 2:40 p.m.At 2:58 p.m .: a second explosion occurred, accompanied by a vertical plume of gas and ash about 4 km high.It continues nourished by successive impulses.Tremor has been recorded continuously since 3 p.m., the most important signals accompanying the most important phases of ash emissions, charged with lightning. A third explosion occurred from 6.35 p.m.. As of 8:41 am this morning April 9, 2021 UWI-SRC reported that an explosive eruption began at the La Soufrière volcano in St. Vincent. This is a culmination of the seismic activity that began on April 8. The eruption is ongoing and more information will be shared as things progress. Previously la Soufriere volcano was raised to alert level Red. St. Augustine, Trinidad and Tobago, W.I. – 6:30pm April 8th, 2021 - Scientists have observed a significant increase in activity at La Soufriere volcano which has prompted The Government of Saint Vincent and the Grenadines to raise the volcanic alert level at the La Soufriere volcano to Red. he UWI-Seismic Research Centre scientific team based at the Belmont Observatory in St. Vincent recorded six separate bands of volcanic tremor throughout the day. This new type of seismic event has not yet been observed since the beginning of the eruption in December 2020. This type of seismic signal is usually associated with movement of magma and fluids close to the surface. Ash venting was also observed during the most recent tremor episode.The effusive eruption is continuing and an explosive phase of the eruption may begin with very little warning. An evacuation order has been issued for communities in the Red volcanic hazard zone. Prime Minister Ralph Gonsalves made the announcement during the second of two press conferences held in Kingstown today. The UWI-SRC Geologist and Scientific Team Lead, Prof. Richard Robertson indicated that “We cannot give any clear warning that nothing can happen within the next 24-48 hours and we would not be surprised if there are explosions at the volcano during that period.” As of the 7th of Aprl, UWI-SRC reported that the Volcano Monitoring Network continued to record small earthquakes associated with the growth of the lava dome. There were also several small Volcano-Tectonic (VT) earthquakes located beneath the volcano. UWI-SRC reported that the new swarm of Volcano-Tectonic (VT) earthquakes which began at the La Soufrière Volcano at 6:38 am on 5th of April continued at a fairly constant rate before starting to decline at about 2:00 p.m. Activities declined significantly at 4:00 p.m. although small Volcano-Tectonic earthquakes were still being recorded. The current swarm of Volcano-Tectonic earthquakes have been located at a depth about 6 km below the summit of the La Soufrière Volcano. This is slightly deeper than those recorded between March 23 and 25, 2021 which were located at depths from 3 to 5 km below the summit. (Earlier estimates of these swarms were revised from 10 km to 3 to 5 km). The largest Volcano-Tectonic earthquake was recorded at 2:16 pm today, with a magnitude of 3.9. There were nine more Volcano-Tectonic earthquakes in the swarm with magnitudes of 3.0 or more.This new warm of Volcano-Tectonic earthquakes were also much more intense compared to those which occurred during the period March 23-25 and contained many more small earthquakes, with an average rate of about 50 earthquakes per hour compared with 1.5 per hour in March.UWI-SRC reported that on 3rd of April, dome growth continues as the magma fills the space around the old 1979 dome. As of the 29th of March, UWI-SRC reported that activity at the La Soufrière Volcano continues to be at a low level dominated by small earthquakes associated with growth of the lava dome. The alert level remains at Orange. The National Emergency Management Organisation is reminding the public that no evacuation order or notice has been issued. As of the 28th of March, UWI-SRC reported that period of elevated volcano-tectonic (VT) earthquakes which began on 23 March 2021 stopped on March 26, 2021. Since then, the only seismic activity being recorded are small low frequency events associated with the growth of the dome. These kinds of events were dominant before March 23, 2021. Their rate of occurrence does not appear to have changed as a result of the volcano tectonic earthquake swarm.The new dome continues to grow towards the Leeward and Windward sides of the Volcano with the most active gas emissions being at the top of the new dome, as well as the contact areas between the pre-existing 1979 and 2020/21 domes. A drone survey of the dome conducted on March 19th indicates that approximately 6,291,084 m3 of new material (nearly double in size), has been added to the dome since the last survey on February 12. As of the 25th of March, UWI-SRC reported that here have been no changes in activities at the La Soufrière Volcano over the past twenty four hours. Volcano tectonic earthquakes continue to be recorded beneath the volcano and their magnitude is such that they can be felt in villages such as Fancy, Owia, Point and Sandy Bay. The alert level remains at Orange. As of the 24th of March, UWI-SRC reported that mMonitoring scientists at the Belmont Observatory led by scientists from The UWI Seismic Research Centre (SRC) have noted a change in seismic activity associated with the ongoing eruption of the La Soufrière Volcano. Up until 23 March 2021, the seismic activity had been dominated by very small low-frequency events which were associated with the ongoing extrusion of the lava dome. These were almost always only recorded at the seismic station closest to the dome. Starting at approximately 10:30 local time (14:30 UTC) on 23 March 2021, the monitoring network recorded a swarm of small low-frequency seismic events which lasted for about 45 minutes. These events were different from previous activity in that they were also recorded on other stations. These events were probably associated with magma movement beneath the dome, although their depth cannot be determined. This is the first time that such a swarm has been seen since the seismic network was upgraded in early 2021. Starting at 16:53 local time (20:53 UTC) on 23 March 2021, the monitoring network started recording volcano-tectonic (VT) earthquakes. These earthquakes are normally associated with underground fractures of the rock mass and are commonly generated by magma pushing through an unyielding rock mass. The volcano-tectonic earthquakes were located beneath the volcano, at depths down to 10 km below the summit. The largest of these had a magnitude of 2.6. Some of them have been reported felt by people living in communities close to the volcano such as Fancy Owia and Sandy Bay. At the present time the volcano-tectonic earthquakes continue, with the numbers of events fluctuating. The very-small dome-extrusion events also continue.As of the 23rd of March, UWI-SRC reported that the dome has continued to grow towards the north-west and south-east with the most active gas emissions being at the top of the new dome, as well as the contact areas between the pre-existing 1979 dome and the 2020-21 dome. As of the 19th of March, new estimation for lava dome gave a volume of 13.13 millions/m3 with a length of 912 m, a width of 243 m, and a height of 105 m. As of the 16th of March UWI-SRC reported that the lava dome is still slowly growing at about 2m/3 per second. No notable change occurred at the volcano (update video). As of the 12th of March, testing and preparation to install a permanent multi-gas monitoring instrument at the top the volcano continues. The team from the Soufriere Monitoring Unit will conduct a drone survey and take aerial photographs of the volcano on Saturday 13th March, 2020, once the weather condition is good. As of the 8th of March, UWI-SRC that the monitoring team made a visit to the La Soufrière Volcano last week for visual observations and drone survey of the dome. Another visit was made to the hot springs on the Wallibou River for water sampling, gas and temperature measurements. Measurements were also undertaken of carbon dioxide in the soil along the Wallibou riverbed. Clear weather conditions at the top of the volcano allowed for aerial photographs to be taken but no new volumes were obtained due to technical problems with the images. Visual observations of the inside of the volcano during the visit confirmed that slow dome growth continues with the south-eastern front of the dome now in line with the pre-existing fumarole on the 1979 dome. No new data is available on the gas coming from the volcano. The ongoing outflow of magma onto the crater floor continues with periodic changes in the rate of dome growth. As of the 5th of March, the new seismic station built at the Bamboo Range National Parks Interpretive Center on the east side of the volcano was operational. A new Global Positioning System (GPS) continuous monitoring station has been installed on the recently constructed monument in Fancy. Work continued at the Belmont Observatory on the installation of the seismic data acquisition system.The gas plume coming from the dome at La Soufriere continues to cause damage to vegetation in the summit areas on the south-western side of the volcano. The measurement of carbon dioxide in soil along the lower sides of the volcano has commenced. As of the 26th of February UWI-SRC reported that no drone surveys or aerial photographs of the volcano were done due to poor weather conditions. Satellite images on February 23, 2021 confirmed that the dome continues to grow slowly. The results from the testing of gas given off by the new dome remain unchanged and continue to consist of water vapour (H2O), carbon dioxide (CO2,), hydrogen sulphide (H2S) and sulphur dioxide (SO2). As of the 25th of February, UWI-SRC reported that the lava dome is still growing. No notable change occurred at the volcano. The camera set up at the La Soufrière Volcano was replaced. There are plans in place to install a new seismic station at Bamboo Range on the eastern (Windward) side of the volcano. Equipment for installation is being prepared by the Seismic Research Centre and Soufrière Monitoring Unit Team. Gusty conditions did not allow for drone footage past week. The team continued their work at the summit on Saturday 20th February and managed to get a few photos. Update on dome volume will be given after a full drone flight. As of the 17th of February, UWI-SRC reported that all monitoring data indicate that the ongoing effusion (outflow) of magma onto the crater floor continues. The overall rate of growth since onset of dome growth is approximately 1.9 cubic metres per second. There are no clear indications that the activity is either increasing or decreasing in intensity, but there are periodic changes in the rate at which dome growth is occurring. Measurements of the gas emissions (releases) from the new dome, as well as a preliminary visual inspection of rock samples collected from the dome is indicative of new magmatic material from depth, contributing to the lava extrusion now taking place in the crater. There is a clear gas plume column/cloud/trail) from the dome that is damaging the vegetation in the summit areas on the south-west of the volcano. As of the 16th of February, UWI-SRC reported that the new dome continues to grow towards the north-west and south-east with the most active gas emissions being the contact areas between the pre-existing 1979 dome and the 2020-21 domes, as well as the top of the new dome.Plans have been put in place to establish a new seismic station along the volcano trail and for the establishment of benchmarks for GPS measurements to be done at Table Rock and Jacob’s Well along the trail to the volcano. As of the 13th of february, UWI-SRC reported that the volume of the dome  was now estimated at 6.83 million m³, for 618 m in length, 232 m in width and 90 m in height, growing. The most active gas emissions are at the contact areas between the pre-existing 1979 dome and the 2020-2021 dome, as well as at the top of the new dome. Damage to vegetation, due to acid gases emitted by the growing dome, downstream from the summit, continues to be observed. Falling blocks on the sides of the new dome are recorded by seismographs, and observed. New seismic monitoring equipment was provided by the USGS through the Volcano Disaster Program. An Orange Level alert means highly elevated seismicity or fumarolic activity, or both.As of the 12h of February, UWI-SRC reported that the most active gas emissions are at the contact areas between the pre-existing 1979 dome and the 2020-21 dome, as well as the top of the new dome.Damage to vegetation, from acidic gases emitted from the growing dome, downslope of the summit continues to be observed. As of the 10th of February UWI-SRC reported that no noticeable change occured, the new dome continue to grow with lateral spreading of material towards the North and South, with a preferred northward growth observed. (updated video). The most active gas emissions are at the contact areas between the pre-existing 1979 dome and the 2020-21 dome, as well as the top of the new dome.Satellite images captured on February 5, 202l allowed for a completely clear view of the crater. The new dome continues to grow with lateral spreading of ~15 m towards the north-west and south-east. An investigation was carried out in the region of the hot springs of Wallibou on Sunday February 7, 2021 based on a report indicating irregular temperatures and unusual gas odors. Some gas samples were taken and the temperature was taken at various points and also some liquid samples were taken for further analysis. Lava dome measurements carried out on February 1st was : 511 meters lengh by 231 meters large, for a height of 93 meters and an estimated volume of 5.93 million m³. Observations made northwest of the dome suggest a new area affected by fire that affected vegetation on the crater walls. (updated video) . Some gas measurements were done on 1st of February using a Multi-Gas Instrument and a filter pack and detected the first day that sulfur dioxide (SO2) gas in the eruption. Additional reflectors for the Electronic Distance Measurement (EDM) target were installed this day, bringing the total number of reflectors installed to nine (9). These reflectors will be used to assist with measurements of deformation associated with the flanks of the volcano. .Some gas measurements were done today using a Multi-Gas Instrument and a filter pack. The Multi-Gas measurements were successful. Since the installation of station on 06 January on the flanks of the volcano, at Wallibou, and the one at the summit, on 18 January, 573 events have been recorded, up to 07:30 a.m., on 30 January. Three GPS stations are currently streaming data to Seismic Research Centre. Telemetry of the data being collected from the new GPS station installed at the Richmond Vale Academy on 23 January, is still ongoing. Since 31 December 2020, no significant deformation signals related to the current effusive eruption have been observed. The Team from the UWI Seismic Research Centre and the Soufrière Monitoring Unit will spend the next few days scouting to air mark sites to carry out the surveys for the EDM and to install more reflectors inside the base at the volcano for the EDM target.On 27th of January the dimensions of the new dome of the Soufrière de St Vincent  was 428 m lengh, 217 m large and 80 m in height - total volume 4.45 million m³. As of the 25th of January, UWI-SRC reported that the volcano continues to exude magma on the surface and steam can still be observed from the Belmont Observatory. Generally clear views of the volcano indicate that the damage to the vegetation due to acidic gases continue to creep downslope. Alert level remains at Orange.  Full advantage was taken of the general clear conditions at the summit on 24th of January to achieve several tasks.Aerial photographs and video of the volcano were taken, through the assistance of Drone Pilot Rommel De Freitas and Professor Robertson.The electronics team led by Mr Ian Juman installed a camera and EDM reflector on the southern crater wall. The camera will be used to help track growth of the dome while the EDM reflector would be used to check for possible instability of the southern crater wall. UWI-SRC reported that the volcano continues to exude magma on the surface and steam can still be observed from the Belmont Observatory. GPS monitoring station was installed at the Richmond Vale Academy on 23rd of January. The team prepared monitoring equipment at Belmont to be installed close to the summit of the volcano on Sunday 24th. As of the 22nd of January, UWI-SRC reported that the volcano continues to exude magma on the surface and steam can still be observed from the Belmont Observatory. Close observations of the volcano were made at the Belmont Observatory during most of the day. Gas emissions from the dome were consistent throughout the day.The area of burnt vegetation continues to creep downslope and has now expanded towards the top eastern rim of the crater. As of the 21st of January, UWI-SRC reported that Alert level remains at Orange. The volcano continues to exude magma on the surface and steam can still be observed from the Belmont Observatory. Persons living in areas close to the volcano should expect strong sulphur smells for several days to weeks, depending on changes in wind direction. UWI-SRC reported that no clear views were obtained of the dome on 20th of January. The volcano continued to exude magma on the surface and steam can still be observed from the Belmont Observatory. As of the 19th of January, UWI-SRC reported that effusive activity of the lava dome continued. The dome took on an elliptical shape. As of the 18th of January, UWI-SRC reported that effusive activity continued (video report from UWI-SRC) . UWI-SRC reported that visual observations of the dome on 17th of January late in the afternoon allowed for clear views into the crater. The dome continues to increase in height, to spread laterally and to emit volcanic gases. The areas of most active gas emission were noted to be the contact areas between the pre-existing 1979 dome and the 2020-21 dome, as well as the top of this new dome. An extensive area of burnt vegetation was observed in the western section of the crater floor, extending outwards from the dome. UWI-SRC reported that Soufriere continues to erupt "effusively" as hot magma reaches the surface at extreme temperatures. This appears overnight as a bright red glow above the crater, observed by the villagers of Chateaubelair and surrounding areas on the western flank of the volcano. UWI-SRC team safely and successfully collected rock samples from the new lava dome  on January 16. Analyzing the composition of these rocks will provide valuable information on whether the new dome is made of old material (linked to the 1979 eruption) or fresh material from greater depths. During the field visit on January 16th, UWI-SRC team took photo of the dome with a thermal camera: on a growing area, the max. was 590.8 ° C but the internal temperatures must be higher, which justifies a night incandescence. An expanse of burnt vegetation was observed in the western section of the crater floor, extending outward from the dome. As of the 15th of January, UWI-SRC reported that observations indicate that the dome has continued to grow; and was now about three quarters (¾) of the height of the pre-existing 1979 dome, with a estimated of 340 m long, 160 m wide, and 90 m high. . Growth of the dome continues with lateral spreading of material towards the east and west along the moat areas surrounding the 1979 dome.Gas emissions were observed from several areas of the 1979 dome as well as the crater floor through several cracks which have developed. Damage to the vegetation was extensive within the eastern, southern, and western parts of the inner crater walls. The damage reported on previously that is occurring along the upper part of the south western crater rim, has continued to slowly extend downslope. UWI-SRC reported that te dome continues to grow in height and extends laterally to the east and west, confined between the old dome and the crater wall, following continued magmatic extrusion. Steam is visible from the Belmont Observatory. A helicopter arrived from Antigua on January 14, allowing aerial reconnaissance, and the taking of thermal images, gas emissions and measurements of the dimensions of the new dome. New gas measurements and analyzes must be carried out. The alert level remains at orange. The scientists have reported that carbon dioxide is also one of the gases coming out of the volcano, along with Sulphur Dioxide. UWI-SRC reported that heavy cloud did not allow for aerial reconnaissance on 13th of January. Arrangements have been made for aerial reconnaissance over the next few days via helicopter. As of the 12th of January UWI-SRC reported that due to bad wheather conditions no areial reconnaissance could be carried.dome. The new dome continues to grow (estimation from UWI-SRC) about 1.5 m3 per second; wedged between it and the crater wall, it expands laterally in a westerly direction. Its shape has changed from round to ellipsoid. The vapors emitted are visible from the Belmont observatory.The alert level remains orange.(video) dated 12th of January. As of the 11th of January, UWI-SRC reported that no reconnaissance flight of the La Soufriere was done due to unfavorable weather conditions. The dome that broke through the crater floor, on the south-west perimeter of the existing dome, continues to grow within the crater of La Soufrière and has an ellipsoid shape with growth expanding in a westerly direction. UWI-SRC bulletin 11, dated 10th of January reported that weather conditions did not allow for a reconnaissance flight on Saturday 9th January or Sunday 10th January, 2021, however analysis of footage collected from a drone flight over the volcano on Saturday 9th January indicate that the drone continues to grow (photo). The dome that broke through the crater floor, on December 27, 2020, on the south-west perimeter of the existing dome, continues to grow within the crater of La Soufrière and has an ellipsoid shape with growth expanding in a westerly direction. Alert level remains at Orange. Two scientists from the Seismic Research Centre (SRC) based at the Montserrat Volcano Observatory (MVO), will join the current team here in St. Vincent later this week. They are expected to gather data from the dome and crater through temperature and photogrammetry measurements and gas measurements using a MultiGAS and spectrometer. UWI-SRC bulletin 10, dated of January 8th, reported that the dome that broke through the crater floor, on December 27, 2020, on the south-west perimeter of the existing dome, continues to grow within the crater of La Soufrière and has an ellipsoid shape with growth expanding in a westerly direction. UWI-SRC bulletin 9 dated on 7th of January reported the volcano continues to exude magma on the surface, steam can still be observed from the Belmont Observatory and the new dome also continues to increase in size. Persons living in areas close to the volcano should expect strong sulphur smells for several days to weeks, depending on changes in wind direction. The SRC Team conducted a successful reconnaissance of the La Soufriere Volcano on board the French Helicopter on Wednesday 6th January, 2021 through an arrangement between the Government of St. Vincent and the Grenadines and the Government of France, through the Embassy of France to the Eastern Caribbean States, to Barbados and the OECS in Saint Lucia. The second planned reconnaissance on that day on board the Regional Security System (RSS) Aircraft was cancelled due to the presence of heavy cloud cover when the aircraft arrived.UWI-SRC bulletin 8 dated of 5th of January reported that alert level remained at Orange. The Volcano continues to exude magma on the surface and steam can still be observed from the Belmont Observatory.Based on observations this day, the dome is slowly getting bigger. Persons living in areas close to the volcano should expect strong sulphur smells for several days to weeks, depending on changes in wind direction. UWI-SRC-NEMO reported that no aerial reconnaissance of La Soufriere was done on 4th of January due to the heavy cloud cover. Alert level remains at Orange. The Volcano continues to exude magma on the surface and steam can still be observed from the Belmont Observatory. Persons living in areas close to the volcano should expect strong sulphur smells for several days to weeks, depending on changes in wind direction. UWI-SRC reported that a flyby carried out by the Nemo on January 3rd allowed to see the new dome in constant growth. Satellite images taken by Sentinel 2 SWIR and visible Planetlabs clearly reveal its position in the crater.The surveillance of La Soufrière has been reinforced. A webcam surveillance system was installed at Rose Hall on January 2 to continuously observe the summit of the volcano. A data center has also been created at the Belmont Observatory, to analyze the data collected on the volcano. The alert level remains at Orange. The volcano continues its effusion activity, and steam can be observed from Belmont. UWI-SRC reported that two aerial reconnaissance were carried out on 31st of December 2020 at the Soufrière of St-Vincent: but a strong cloud cover prevented a good view of the crater during the first reconnaissance; The second aerial reconnaissance was carried out around 4:00 p.m. and the photographer was able to capture photos of the crater, which shows the effusive eruption is continuing and the new dome is also continuing to increase in size. The alert level remains at Orange. People living in areas near the volcano, which include communities of Fancy in Georgetown and Belle Isle in Richmond, are urged to remain vigilant and listen to any advice from the National Emergency Management Organization (NEMO).As of the 30th of December, NEMO and UWI reported that although there have been no significant changes over the past 24 hours at Soufrière de St -Vincent, materials and magma continue to accumulate on the surface with no associated seismic activity. The construction of the Dome continues, its size is seen slightly larger than on December 29, during the monitoring of the volcano by aerial surveillance. The alert level remains at Orange - high fumarolic activity. All residents living in communities closer to the volcano (red and orange zones) are asked to be on alert for any increased activity.Following an effusive episode residents of Saint Vincent and the Grenadines have been placed on alert.(relief bulletin). According to a press briefing on December 22, the Seismic Research Center at the University of the West Indies (UWI-SRC) in Trinidad was made aware by National Aeronautics and Space Administration (NASA) of a hot spot on La Soufrière. Since the beginning of November, there has been an increase in the background level of seismic activity recorded at La Soufrière. The photo taken by the main seismic technician of the Soufrière monitoring unit on December 29, 2020 shows a new dome with steam in the crater following an effusive eruption at the La Soufrière volcano in St Vincent. The UWI-SRC is currently monitoring the situation in collaboration with the local authorities and an update will be provided shortly. The public is advised not to visit the volcano until a new update is provided. The UWI-SRC and the National Emergency Management Organization (NEMO) are the official sources of information on earthquakes and volcanic activity in St Vincent and the Grenadines. Soufrière St. Vincent is the northernmost and youngest volcano on St. Vincent Island. The NE rim of the 1.6-km wide summit crater is cut by a crater formed in 1812. The crater itself lies on the SW margin of a larger 2.2-km-wide Somma crater, which is breached widely to the SW as a result of slope failure. Frequent explosive eruptions since about 4300 years ago produced pyroclastic deposits of the Yellow Tephra Formation, which blanket much of the island. The first historical eruption took place in 1718; it and the 1812 eruption produced major explosions. Much of the northern end of the island was devastated by a major eruption in 1902 that coincided with the catastrophic Mont Pelée eruption on Martinique. A lava dome was emplaced in the summit crater in 1971 during a strictly effusive eruption, forming an island in a lake that filled the crater prior to an eruption in 1979. The lake was then largely ejected during a series of explosive eruptions, and the dome was replaced with another. (GVN/GVP). Photos booklet online about previous eruption.

FRANCE - Montagne Pelée ( Martinique island)

August 15th, 2021

Between August 6 and 13, the OVSM recorded at least 29 volcano-tectonic earthquakes of magnitude less than or equal to 0.2 (since the lightning of the night of June 29 to 30, 82% of the Montagne Pelée seismological station network and 86% of the volcano's deformation detection network are operational). The previous week, between July 30 and August 6, 121 earthquakes were recorded. These earthquakes were located inside the volcanic edifice between 0.3 km above sea level and the surface. None of these earthquakes were felt by the population. This volcano-tectonic-type superficial seismicity is associated with the formation of microfractures in the volcanic edifice.A degassing zone at sea was detected at shallow depth (between Saint-Pierre and Le Prêcheur). The alert level remains on Yellow. Between July 9 and 16, the Volcanological and Seismological Observatory of Martinique recorded at least 76 volcano-tectonic earthquakes of magnitude less than or equal to 0.2. There were 41 earthquakes between July 2 and 9. This week's 76 earthquakes were located inside the volcanic edifice between sea level and 1 km above sea level. None of these earthquakes were felt by the population. A main area of ​​heavily degraded vegetation is still observed on the southwest flank of Mount Pelée, between the upper Claire River and the Chaude River. These observations reflect the variable dynamics of the processes of magmatic and hydrothermal origin at Mount Pelée in line with its renewed activity since April 2019. L'Observatoire Volcanologique et Sismologique de Martinique (OVSM) reported that seismicity at Pelée increased during 19-26 March. The seismic network recorded at least 55 high-frequency volcano-tectonic earthquakes with magnitudes less than or equal to 1, located at depths between 1.7 km below sea level and 1 km above sea level. The Alert Level remained at Yellow (the second lowest level on a four-color scale).L'Observatoire Volcanologique et Sismologique de Martinique (OVSM) reported that seismicity at Pelée remained at significant levels during 8-15 January, though had slightly decreased compared to the previous week. The seismic network recorded at least 22 high-frequency, volcano-tectonic earthquakes with magnitudes less than 1, located at shallow depths between 600 and 1,000 m above sea level. Two low-frequency, long-period earthquakes were also noted. The Alert Level remained at Yellow (the second lowest level on a four-color scale). L'Observatoire Volcanologique et Sismologique de Martinique (OVSM) reported that seismicity related to volcanism has typically remained low at Pelé since 1980, when monitoring instrumentation was first installed, with a few dozen earthquakes recorded per year. Swarms were recorded in 1980, 1985-1986, 2007, and 2014, though the latter two swarms were associated with tectonic events. Volcanic seismicity appeared in April 2019 centered 4-5 km below the summit and deeper (more than 10 km below sea level). In addition, tremor-type signals were recorded during 8-9 November 2020, possibly signifying a reactivation of the hydrothermal system. The seismic data recorded since April 2019 represented an increase above baseline levels recorded during 1 January 2015 to April 2019. As a result of this activity OVSM raised the Alert Level to Yellow (the second lowest level on a four-color scale) on 4 December 2020. Seismicity remained above background levels during 18 December 2020-1 January 2021, with at least 14 volcano-tectonic earthquakes detected with magnitudes less than or equal to 1. Scientists did not observe fumarolic activity during an overflight on 29 December 2020. The number of high-frequency, volcano-tectonic earthquakes (M 1 or less) totaled 65 during 1-8 January. A significant number (249) of long-period earthquakes in a volcanic tremor-type signal were distributed over two periods, 0000-0200 on 3 January and between 2100 on 3 January and 0200 on 4 January. Two isolated, low-frequency, long-period signals were also recorded. The data suggested ongoing perturbation of the hydrothermal system. Previously, Volcanological and Seismological Observatory of Martinique of the IPGP (Institut de Physique du Globe de Paris, CNRS) sent, on Thursday 3 December 2020, an explanatory note to the Prefect of Martinique to recommend a passage to the level of yellow volcanic alert (2nd alert level on a scale that counts 4) of the Pelee Mountain. This recommendation of the OVSM-IPGP comes after the detection of the evolution of seismic signals measured in the context of monitoring the volcano by the observatory and the consultation of a group of experts who studied these phenomena.  Renowned Montagne Pelée, forming the northern end of the island of Martinique, is the most active volcano of the Lesser Antilles arc. Three major edifice failures since the late Pleistocene, the last about 9000 years ago, have left large horseshoe-shaped calderas breached to the SW inside which the modern volcano has been constructed. More than 20 major eruptions have occurred here during the past 5000 years. Extensive pyroclastic-flow deposits, incised by steep-walled ravines, mantle the slopes of the volcano. The l'Etang Sec summit crater is filled by two lava domes emplaced during the 1902 and 1929 eruptions. Historical eruptions date back to the 18th century; only two modest phreatic or phreatomagmatic eruptions took place prior to 1902. The catastrophic 1902 eruption, which destroyed the city of St. Pierre, the "Pearl of the Lesser Antilles," became the type-example of pelean eruptions and marked the onset of modern volcanological studies of the behavior of pyroclastic flows. (GVN/GVP)

FRANCE - Soufriere Guadeloupe

October 3rd, 2020

OVSG reported that a new sequence of volcanic earthquakes began on September 29, 2020 at 5:33 am local time in the area of the La Soufrière of Guadeloupe. On October 2, the OVSG networks recorded 228 earthquakes of M <1, not felt; the hypocenter is located 2.5 km under the dome of La Soufrière. The alert level remains at yellow / vigilance.OVSG reported tha the new sequence of volcanic earthquakes that began on Saturday September 12, 2020 at 7.20 a.m. local time in the La Soufrière area continued on 14th of September with 146 recorded earthquakes of very low magnitude (M <1). .OVSG reported that the sequence of volcanic earthquakes that began on Saturday August 15, 2020 at 2:47 a.m. local time (Saturday August 15, 2020 at 6:47 a.m. UTC in the volcanic aera of La Soufrière of ​​Guadeloupe continues on 16th of August. Since the start of this sequence, the OVSG-IPGP networks have recorded 372 very low magnitude earthquakes (M <1). No earthquakes were reported felt. The events are located at a depth of <2.5 km below the top of the dome of La Soufrière. OVSG reported that since the beginning of 2018 a cyclical process of injecting deep magmatic gases at the base of the hydrothermal system of the Soufrière of Guadeloupe, at a depth between 2 and 3 km below the summit. It generates a recurrent process of overheating and overpressure of the hydrothermal system which results in disturbances in the circulation of hydrothermal fluids; the evolution of the activity of fumaroles at the summit, as evidenced by the projection of hot, acid mud over a few meters; increased swarm volcanic seismicity; some volcanic earthquakes felt, four between February and April 2018, including an earthquake of magnitude M4.1 on April 27, 2018, the strongest since 1976, deformations of small amplitude and limited to the dome of La Soufrière of the order of 3- 7 mm / year and the continued opening of summit fractures, the fluctuation of the flow rates of fumarolic gas from a pressurized hydrothermal reservoir, an increase in thermal anomalies in the soil at the top of La Soufrière. These phenomena are not yet clearly associated with an anomaly in the other monitoring parameters which could indicate a possible rise in magma. The latter would typically, but not systematically, manifest itself through numerous deep or felt earthquakes, large-scale deformations beyond the dome, and the emission of sulfur gases at high temperature (> 150 ° C). La Soufrière de la Guadeloupe volcano occupies the southern end of Basse-Terre, the western half of the butterfly-shaped island of Guadeloupe. Construction of the Grand Découverte volcano about 0.2 million years ago (Ma) was followed by caldera formation after a plinian eruption about 0.1 Ma, and then by construction of the Carmichaël volcano within the caldera. Two episodes of edifice collapse and associated large debris avalanches formed the Carmichaël and Amic craters about 11,500 and 3100 years ago, respectively. The presently active La Soufrière volcano subsequently grew within the Amic crater. The summit consists of a flat-topped lava dome, and several other domes occur on the southern flanks. Most historical eruptions have originated from NW-SE-trending fissure systems that cut across the summit and upper flanks. A relatively minor phreatic eruption in 1976-77 caused severe economic disruption when Basse-Terre, the island's capital city, which lies immediately below the volcano, was evacuated. (GVN/GVP)

Grenade - Kick 'em Jenny submarine volcano

June 17th, 2020

Following an increase in the seismic activity of the underwater volcano Kick 'em Jenny, in the volcanic arc of the Lesser Antilles, observed over a period of seven days in June - a swarm of more than 1,400 volcanic earthquakes of M <1 , 8 -, the National Disaster Management Agency (NaDMA) issued a vigilance notice on June 14, 2020. Although the alert level remained at Yellow / 2, with a 1.5 km marine exclusion zone around the submerged summit of the volcano, the corner is to be avoided, even between eruptions: the release of large quantities of gas bubbles from the volcano, without signs of this surface activity, can decrease the density of seawater above the vent, and decrease the lift of the water.Any navigator is therefore reminded that the 1.5 km exclusion zone must continue to be observed. The volcano is under surveillance by the University of the West Indies Seismic Research Center of the Trinidad and Tobago campus (UWI SRC) and the NaDMA. Kick 'em Jenny, a historically active submarine volcano 8 km off the north shore of Grenada, rises 1300 m from the sea floor. Recent bathymetric surveys have shown evidence for a major arcuate collapse structure that was the source of a submarine debris avalanche that traveled more than 15 km to the west. Bathymetry also revealed another submarine cone to the SE, Kick 'em Jack, and submarine lava domes to its south. These and subaerial tuff rings and lava flows at Ile de Caille and other nearby islands may represent a single large volcanic complex. Numerous historical eruptions, mostly documented by acoustic signals, have occurred at Kick 'em Jenny since 1939, when an eruption cloud rose 275 m above the sea surface. Prior to the 1939 eruption, which was witnessed by a large number of people in northern Grenada, there had been no written mention of Kick 'em Jenny. Eruptions have involved both explosive activity and the quiet extrusion of lava flows and lava domes in the summit crater; deep rumbling noises have sometimes been heard onshore. Historical eruptions have modified the morphology of the summit crater. (video)

MONTSERRAT - Soufriere Hills volcano - West-Indies

April 19th, 2021

As of the 19th of April, MVO reported that Activity at the Soufrière Hills Volcano remains low.The seismic network recorded four volcano-tectonic earthquakes this week.Measurements of the SO2 flux were taken by helicopter on 13 April. There were ten traverses withn average flux of 151 tonnes per day.Due to an unusual, more northerly, wind direction during the week it was possible to smell gases from the volcanic plume at times. On 13 April a very light and fine-grained ash deposit was observed which is thought to have originated from the recent extensive explosive activity of La Soufriere of Saint Vincent. Due to the large size of the lava dome, pyroclastic flows can occur at any time without warning on any side of the volcano, including Gages from where they can travel rapidly into Plymouth. Tracks across the Belham Valley can be destroyed or heavily modified by flash flooding or lahars, and caution should be exercised crossing the valley during and after rainfall. MVO reported that a good visibility on the lava dome of the Soufriere Hills volcano on January 29 and February 2 allowed various fumaroles to be imaged using the portable thermal camera, giving temperatures included between 212 and 472 ° C. These are consistent with previous temperatures measured in December 2020. Visual observations from the helicopter also revealed evidence of continued rockfall activity under all steep faces of the lava dome, particularly inside the 2010 collapse scar and at the head of Gage Fan on the west side of the Lava Dome. Three large slabs have also been observed to form in the cliff wall on the Tar River side of the lava dome, which could lead to large rockfall in the future. This is part of the natural process of weathering and loss of mass and does not imply a decrease in the stability of the lava dome. Previous news 2020 - On the evening of October 19th, 2020, the cloudless Soufriere Hills lava dome was photographed from the Montserrat / MVO and Jack Boy Hill Observatory. A series of digital photographs and thermal images were taken at both locations to capture the fumaroles and hot spots on the lava dome. Digital photographs captured an incandescence of three prominent fumaroles in the cliff that forms the back wall of the 2010 collapsed scar.Comparing these images to the previous ones, there are no changes in the number and distribution of glowing features and hot spots. MVO reported that the activity for the period from June 26 to July 3, 2020 remains low. The seismic network recorded 6 volcano-tectonic earthquakes during the week.The alert level remains at 1, with prohibition of public access to zone V; maritime zones E and W can be used by maritime traffic, without stopping. MVO recent weekly report. Latest MVO report about period 1st of April - 30th of September 2018 - The pause in lava extrusion that started on 11 February 2010 continues and is now more than 103 months long as of 30 September 2018. This prolonged period of persistent low-level unrest, (i.e., continued inflation, sporadic seismicity and persistent de-gassing) clearly demonstrates that the magmatic system has not shut down. Thus, the potential for a restart remains. Consequently, MVO continues to hold the view that little has changed in regards to the Hazard and Risk posed by the Soufriere Hills volcano at this time. Overall, activity during the reporting period has been low. Seismic activity has consisted of sporadic volcanotectonic (VT) earthquakes, sometimes in strings or brief swarms. Low-frequency seismicity has been completely absent, while rockfall activity has continued at a very low level - Read complete report - No recent news since 2016 - latest MVO Weekly Report for the Period 26 August to 2 September 2016 - Activity at the Soufriere Hills Volcano remains low. The seismic network recorded eight rockfalls, seven volcano-tectonic earthquakes and one long-period earthquake this week. Four of the volcano-tectonic earthquakes occurred in a very brief swarm on 28th August. The rockfalls were probably a continuation of the increased activity following the heavy rainfall on 24 August. Sulphur-dioxide measurements were not possible during the reporting period. No recent activity reported since September 2015 - Based on satellite image analyses and wind data, the Washington VAAC reported that on 19 September 2015 possible re-suspended ash from Soufriere Hills drifted WNW at an altitude of 1 km (3,000 ft) a.s.l. - latest previous report about eruptive activity dated for the period from 8th of March 2013 to 5th of July 2013 - Activity at the Soufrière Hills Volcano is still low.The seismic network recorded two rockfalls and five volcano-tectonic earthquakes this week from 28th of June to 5h of July. Sulphur-dioxide measurements gave an average flux of 271 tonnes/day with a maximum of 427 and a minimum of 161 tonnes/day. The seismic network recorded three rockfalls and three volcano-tectonic earthquakes the previous week from 21st to 28th of June. Sulphur-dioxide measurements gave an average flux of 353 tonnes/day with a maximum of 459 and a minimum of 221 tonnes/day. The seismic network recorded four rockfalls and nine volcano-tectonic (VT) earthquakes the week from 14th to 21st.of June. Six of the VT earthquakes occurred in a brief swarm on 16 July. Sulphur-dioxide measurements were only possible on three days this week and gave an average flux of 289 tonnes/day with a maximum of 332 and a minimum of 247 tonnes/day. The seismic network recorded one rockfall and four volcano-tectonic earthquakes the previous week from 7th to 14 th of June.Sulphur-dioxide measurements gave an average flux of 281 tonnes/day with a maximum of 428 and a minimum of 185 tonnes/day. The seismic network recorded nine rockfalls, five volcano-tectonic earthquakes and one long-period event the previous week frm 31st of may to 7th of June.Sulphur-dioxide measurements gave an average flux of 485 tonnes/day with a maximum of 543 and a minimum of 430 tonnes/day. The seismic network recorded three rockfalls, three volcano-tectonic earthquakes and one long-period event this week from 24th to 31st of May. Sulphur-dioxide measurements gave an average flux of 395 tonnes/day with a maximum of 588 and a minimum of 271 tonnes/day. . The seismic network recorded three rockfalls the week from 17th to 24th of May. Sulphur-dioxide measurements gave an average flux of 380 tonnes/day with a maximum of 536 and a minimum of 281 tonnes/day. Many residents of Montserrat felt an earthquake at 7:51 pm on 18 May 2013. This earthquake had a magnitude of 4.9 and was located south-west of Barbuda; about 100 km north of Montserrat. It was not associated with the Soufrière Hills Volcano. The seismic network recorded two rockfalls and five volcano-tectonic this week from 10th to 17th of May. Sulphur-dioxide measurements gave an average flux of 373 tonnes/day with a maximum of 553 and a minimum of 137 tonnes/day. The seismic network recorded three rockfalls, three volcano-tectonic earthquakes and one long-period earthquake this week from 3rd to 10th of May. Sulphur-dioxide measurements gave an average flux of 313 tonnes/day with a maximum of 435 and a minimum of 160 tonnes/day. Measurements were only possible on three days this week because of adverse wind conditions. The seismic network recorded three volcano-tectonic earthquakes this week from 26th of April to 3rd of May. Sulphur-dioxide measurements gave an average flux of 379 tonnes/day with a maximum of 466 and a minimum of 254 tonnes/day. The wind has been mainly towards the north and north-east since the night of 1/2 May. This has blown the volcanic plume over inhabited areas and the smell of volcanic gases has been noticeable at times. The seismic network recorded three volcano-tectonic earthquakes the previous week from 19th to 26th of April. Sulphur-dioxide measurements gave an average flux of 366 tonnes/day with a maximum of 535 and a minimum of 181 tonnes/day. There have been no good views of the dome for over a month now. Reports from helicopter pilots suggest that most of the large slab on the eastern side of the dome is now gone; removed by the pyroclastic flow on 28 March 2013. As of the 19th of April, MVO reported that activity at the Soufrière Hills Volcano is still low. The seismic network recorded two rockfalls and four volcano-tectonic earthquakes during the week from 12th to 19th of April. Sulphur-dioxide measurements gave an average flux of 556 tonnes/day with a maximum of 1155 and a minimum of 271 tonnes/day. Past week 5th to 12th of April, the seismic network recorded no seismic events related to the volcano this week. Sulphur-dioxide measurements gave an average flux of 325 tonnes/day with a maximum of 585 and a minimum of 186 tonnes/day. MVO reported that during 22-29 March activity at the Soufrière Hills lava dome was at a low level. A pyroclastic flow traveled down the Tar River Valley (E) at about 0500 on 28 March. The flow was not observed directly, but the deposits indicated that it traveled halfway down the valley, 1-1.5 km from the dome. There were no reports of ashfall; any ash was probably blown over Plymouth and out to sea. The source of the flow was not known due to cloud cover, but was likely from the failure a large slab that had been slowing moving away from the dome. Heavy rainfall during the evening of 28 March generated large lahars in several valleys around the volcano, including in the Belham Valley (NW). These started at about 1900 and lasted for several hours. The Hazard Level remained at 2 (on a scale of 1-5). Activity at the Soufrière Hills Volcano is still low.The seismic network recorded one rockfall and three volcano-tectonic earthquakes this week from 15th to 22nd of March.Sulphur-dioxide measurements were possible on only three days this week, giving an average flux of 359 tonnes/day with a maximum of 540 and a minimum of 258 tonnes/day. There appear to have been no changes in the large slab recently observed to be peeling away from the dome above the Tar River Valley. The slab is now estimated to have dimensions of 80 by 60 by 4-6 metres. If this slab falls as a single block it will produce a large pyroclastic flow in the Tar River Valley, safely away from populated areas. previously , the seismic network recorded one rockfall this week from 8th to 15th of March.Sulphur dioxide measurements were possible on only three days this week, giving an average flux of 251 tonnes/day with a maximum of 264 and a minimum of 227 tonnes/day. During a helicopter inspection on 8 March 2013, we observed a large fissure in the cliff on the eastern side of the dome, part of which has existed since 2007. This fissure is the result of slow cooling and erosion of the dome. It is parallel to the cliff face and is estimated to be two metres wide, suggesting that a large slab is slowing peeling away from the dome. If this slab falls as a single block it will probably produce a moderate-to-large pyroclastic flow in the Tar River Valley, safely away from populated areas The seismic network recorded one rockfall, two volcano-tectonic earthquakes and one hybrid event this week from 1st to 8th of March.Sulphur dioxide measurements for the week gave an average flux of 368 tonnes/day with a maximum of 552 and a minimum of 213 tonnes/day. Variable winds blew the volcanic plume over inhabited areas for much of the week, particularly the first half, and the smell of volcanic gases was very noticeable at times. There has been no visible emission of ash from the volcano this week. Montserrat Volcano Observatory - View latest NOAA satellite image of Montserrat ( every 30 mn)

**********************************************************************************************************************************************************************************************************

Soufriere Saint Vincent dome - 14th of January 2021 - UWI-SRC

Evolution of the new dome (Soufriere Saint-Vincent)

Soufriere Saint Vincent lava dome footprint between 27th of December 2020 and 19th of March 2021 ( UWI-SRC document)

Explosion on 9th of April 2021 (UWI-SRC)

ECUADOR - Tungurahua volcano

June 8th, 2021

As of the 7th of June, IGEPN reported that the latest earthquakes felt in the town of Baños, of magnitudes less than 2.9 and shallow, were associated with faults nearby. They do not pose a threat to the population. Monitoring of the volcano remains permanent; its surface activity is very low, and the internal activity remains low, both unchanged. Previous news 2020 -IGEPN reported that on November 15th from 6:40 am local, the seismic stations BULB and BILB of the Tungurahua volcano recorded a high frequency signal, perhaps associated with the appearance of mudslides and debris (lahars) which descended the drainages of the volcano. Proximity to rivers was not recommended. IGEPN can make a connection with the information of November 9 which mentionned a process of resuspension of ash in the upper part of Tungurahua, following strong winds blowing towards the north-west. (NOAA - IGEPN satellite image) Previous news dated 2016 - IG reported that during 27 September-4 October seismic activity at Tungurahua remained at moderate levels, characterized by 1-8 long-period earthquakes and up to three volcano-tectonic events per day. An hour-long period of tremor was recorded on 1 October. Minor fumarolic emissions rose above the crater rim. IG reported that Tungurahua's seismic network detected a significant increase in the number of long-period (LP) earthquakes on 12 September and small episodes of tremor beginning on 16 September. A swarm of 24 LP events were detected during 0408-0424 on 18 September. Starting at 1400 on 24 September the number of LP events again increased. Gas emissions were low, and together with the increased seismicity, possibly indicates a blocked conduit. IG noted that a possible large-scale eruption may happen within hours to days. In response, the Secretaria de Gestion de Riesgos (SGR) announced that the Alert Level was raised from Yellow to Orange (the second highest on a 4-color scale) on 26 September. Previously IG reported that activity at Tungurahua was at moderate-to-high levels during 16-17 March, moderate levels during 18-21 March, and low levels on 22 March. Cloud cover prevented views of the volcano; the weather cleared for a brief period on 20 March and no activity was observed. IG reported that moderate-to-high levels of activity at Tungurahua continued during 9-15 March. Gas-and-ash plumes rose from the crater on most days, often to heights less than 2 km above the crater, and drifted NW, W, WSW, and SW; cloud cover sometimes obscured views of the volcano. Explosions were recorded daily, and crater incandescence was reported almost nightly. Ash fell on 9 March in Pillate (8 km W), El Manzano (8 km SW), Cotalo (8 km NW), and Macas. On 10 March a small pyroclastic flow traveled 1.5 km NW down the Achupashal drainage. On 15 March residents in the Runten sector (NNE) heard an explosion and sounds resembling rolling rocks on the NE flank. Ash fell in Patate (NW) and Juive (7 km NNW). Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Tungurahua - Live webcam

ECUADOR - Guagua Pichincha volcano

June 16th, 2016

No new report since 2016 - The Washington VAAC reported that on 14 June 2016 a possible ash emission from Guagua Pichincha was visible in satellite images drifting NW. Seismicity was elevated. A VAAC report issued about five hours later noted that no further notices of activity had been received. Previous news 2015 - IGEPN reported that seismic activity was detected since end of March 2015. (58 earthquakes during the 31st of March) A second swarm has been reported from 14th to-15th of April probably due to rocks fracturation. As of the 17-18 and 19th of April sulfur odor was detected from the rifugio and according to visual observation the main fumarole close the 1981'crater was more active that the previous days. As of the 20th of April, two phreatic explosions occurred (at 5:06 and 5:58 local time) on the Cristal dome complex active zone. As of the 29th of April, IGEPN recorded a signal tremor type probably in relation with geothermal activity under the volcano. Last previous activity was reported on 2010 : As of the 14 th of September 2010, IG reported that no significative change between 6-12 September period. Seismic network continues to record important number of events related to fracture of rock to the interior of the volcano, nevertheless did not register any type of additional anomaly. As of the 17th of April 2010, IG reported that there no change, both the seismic activity and fumarole emission remained at a low level. Previous significative information : as of the 20th of February 2009, IG reported that the seismic stations Geophysical Institute have registered for days back a slight increase of the internal activity of volcano Guagua Pichincha. In previous days 4 phreatic explosions of moderate size have been registered. These explosions happen due to an increase of the internal steam pressure, possibly related to the increase of precipitations observed in the zone of volcano. Therefore the Geophysical Institute recommends that it is not allowed to descend to the interior of the crater since the phreatic explosions could be repeated and the people could take the rock hit, other materials and/or rarefaction waves that are generated by these events. These phreatic explosions they happen generally at times of much rainfall, this is the reason why these explosions not necessarily are indicative of a substantial increase of the activity of volcano Guagua Pichincha. The Geophysical Institute in its preprecautionary eagerness of the security of the people maintains a monitoring permanent of the state of this and other volcanos of the country and will inform opportunely into any change that these can present/display. The activity of the volcano shows a slight increase in its seismic activity with respect to the previous months. 40 volcano-tectonic (VT) earthquakes have been registered, which are related to the fracturing of rocks to the interior of the complex between the 14th and the 18th of February. These earthquakes are of small magnitude, which is the reason why they have not been perceived by the population. It is possible to indicate that during the 2007, an average of 4.2 VT earthquakes per day was had. Also in this time interval 6 events of long period (LP) per day were registered when the average in the 2008 was of 0.3. LP events are related to resonances of cracks full of flowed inside the volcano. In addition it is important to mention the presence of explosions of moderate magnitude, related to the phreatic activity. The 16th of February the guardian of the refuge of the volcano perceived an increase in the scent to sulphur in the high part of the crater. Guagua Pichincha rises immediately W of Quito, Ecuador's capital city. The broad volcanic massif is cut by a large horseshoe-shaped summit caldera, ~6 km in diameter and 600 m deep, that was breached to the W during a slope failure ~50,000 years ago. - Information : I G Quito

ECUADOR - Reventador volcano

September 12th, 2021

IGEPN reported that in the afternoon of September 10, several ash emissions were observed at the Reventador in a north and west direction, the heights approaching 700 and 1000 meters above the crater level. The Washington VAAC reported 4 alerts of emissions observed in satellites, their direction varied between northwest and west, heights did not exceed 1000 meters above crater level. Finally by late afternoon, the area was partially clear, and gas emissions were observed up to 1200 meters above crater level in a northwest direction. At night, an incandescence was observed in the upper part, in addition to the rolling of incandescent blocks up to 500 meters below the level of the crater on the sides of the volcano. Seismicity is characterized by 56 explosion earthquakes, 60 LP earthquakes, 20 emission tremor episodes, and 4 harmonic tremor. As of the 24th of August, IGEPN reported that over the past 24 hours, several ash emissions have been observed at the Reventador in a westerly, southwest, and southerly direction, with plume heights approaching 600 and 1,000 meters above crater level. The VAAC Washington reported 4 alerts of emissions observed by satellites; the direction of these emissions oscillated from west to southwest and the heights did not exceed 1,400 meters above the level of the crater. FIRMS reported 14 thermal alerts to the Reventador in the last 24 hours. MIROVA reported 2 low thermal alerts and 1 moderate thermal alert to Reventador in the past 24 hours. During the same period, the volcano sometimes became cloudy. At night, an incandescence was observed in the crater and the rolling of boulders along the southern flank of the volcano up to 500 meters below the level of the crater. As of the 9th of August, IGEPN reported that several steam emissions were observed, which reached up to 1,200 meters above the crater in a north-westerly and westerly direction. The Washington VAAC reported ash emission up to 988 meters above the summit to the west. Seismicity was characterized over the last 24 hours by 34 explosion earthquakes, 42 LP earthquakes and 3 tremor period. MIROVA has recorded 1 low thermal anomaly in the last 24 hours. During the night, an incandescence was observed at the level of the crater. During the morning of August 9, the weather remained very cloudy. IGEPN reported that several ash emissions were observed in a westerly and north-westerly direction, this August 3, 2021, reaching up to 800 meters above the crater level. The Washington VAAC issued 3 alerts of emissions observed on the satellites, its direction was maintained towards the northwest and the heights did not exceed 800 meters above the level of the crater. Seismicity is characterized between August 2 and 3 at 11 a.m. by 91 explosion earthquakes, 75 LP earthquakes, 10 emission tremor episodes, and one harmonic tremor episode. Neither FIRMS nor MIROVA have logged any thermal alerts in Reventador in the past 24 hours. In the afternoon and night of yesterday, the volcano was repeatedly cleared and incandescence was observed in the crater. As of the 26th of July, IGEPN reported that a degassing plume (gas and ash) was observed up to 700 meters above the level of the crater, dispersing towards the west. The VAAC issued an emission alert observed in satellites 688 meters above the crater level in a northeast direction. FIRMS records 3 thermal alerts and MIROVA records 1 low thermal alert in the last 24 hours. At night, an incandescence was observed in the upper part of the volcano, in addition to the rolling of incandescent blocks up to 700 meters below the level of the crater on the northeast flank.IGEPN reported that gas and ash emissions were observed on 12th of July during afternoon that rose 500 to 1,000 meters above crater level in a northwest direction. VAAC Washington reported 2 alerts of satellite-observed transmissions, which reached heights of 700 meters above crater level in a west-northwest direction.FIRMS has reported 1 thermal alert to the Reventador in the last 24 hours. At night, an incandescence was observed in the crater and the rolling of incandescent materials along the southeast flank of the volcano up to 300 meters below the level of the crater. The rest of the time, the volcano remained cloudy. IGEPN reported that a high level of activity continued to be recorded at Reventador during 29 June-6 July; adverse weather conditions sometimes prevented visual confirmation. Seismicity was characterized by daily explosions, harmonic tremor events, long-period earthquakes, and signals indicating emissions. Gas, steam, and ash plumes, often observed multiple times a day with the webcam or reported by the Washington VAAC, rose as high as 1.6 km above the summit crater and drifted mainly W, NW, and NE. Crater incandescence and incandescent blocks rolling down the S flank were often observed at night. IGEPN reported that several ash emissions were observed in the morning of July 2, 2021, in a westerly and north-westerly direction, heights around 800 and 1000 meters above the crater level. The Washington VAAC reported 2 warnings of emissions observed in satellites, its direction was maintained towards the west and the heights did not exceed 1000 meters above the level of the crater. FIRMS reported 7 thermal alerts to Reventador in the last 24 hours From the night and part of the morning of today the volcano appeared clear allowing to observe the described emissions and at night the incandescence in the crater and the rolling of incandescent material on the south-eastern and north-eastern flanks. east of the volcano. IGEPN reported the observation on 27 June 2021 of ash emissions at an average height of 1,000 metres above the crater, and the descent of incandescent blocks on the south-eastern flank over a distance of up to 800 metres below the crater level. Seismicity is characterised by 12 LP earthquakes, 55 explosion earthquakes; and 8 tremor episodes. Two thermal anomalies have been recorded in the last 24 hours.The alert level remains at naranja. As of the 7th of June, IG reported that the Reventador presents a high surface activity, with an increasing tendency, and a moderate internal activity, without change. In terms of seismicity, on June 7/11 a.m., there were 12 explosion earthquakes, 37 LP earthquakes and 4 tremor episodes. Two ash emissions are reported by VAAC Washington, at a max. 700 m. above the summit. As of the 4th of May, IG reported that gas and ash emissions were observed at the Reventador, between 600 and 1,200 meters above crater level, in a northeast, northwest and southeast direction, confirmed by VAAC Washington No thermal alerts have been recorded in the last 24 hours. Explosions were observed, as well as incandescence in the crater and rolling boulders up to 500 meters below the summit on the southern flank. In addition, the descent of a pyroclastic flow was observed up to 400 meters below the summit, on the southwest flank on May 4, 2021 at 6:10 am local / 11:10 am UTC. IG reported that a high level of activity continued to be recorded at Reventador during 24-30 March; adverse weather conditions sometimes prevented visual confirmation. Seismicity was characterized by 49-80 daily explosions, volcano-tectonic and harmonic tremor events, and long-period earthquakes, as well as signals indicating emissions. Gas, steam, and ash  plumes, often observed multiple times a day with the webcam or reported by the Washington VAAC, rose as high as 1.4 km above the summit crater and drifted mainly W, NW, SW. Crater incandescence and incandescent blocks rolling down the NE flank were observed nightly and accompanying explosions during 24-25 March.IG reported that a high level of activity continued to be recorded at Reventador during 16-23 March; adverse weather conditions sometimes prevented visual confirmation. Seismicity was characterized by 31-81 daily explosions, volcano-tectonic and harmonic tremor events, and long-period earthquakes as well as signals indicating emissions. Gas, steam, and ash plumes were often observed multiple times a day with the webcam or reported by the Washington VAAC; they rose as high as 1.5 km above the summit crater and drifted mainly NE, E, and SW. Crater incandescence and incandescent blocks rolling at least down the N, NE, and E flanks were observed nightly.IG reported that on February 3 in the late afternoon, ash emissions were observed 600 meters above the crater, and dispersal to the west.Nighttime explosions and incandescence in the crater are reported, as well as boulder rolls 600 meters below crater level. IG reported that a high level of activity continued to be recorded at Reventador during 19-26 January; adverse weather conditions sometimes prevented visual conformation. Seismicity was characterized by 42-106 daily explosions, volcano-tectonic and harmonic tremor events, and long-period earthquakes as well as signals indicating emissions. Gas, steam, and ash plumes, often observed multiple times a day with the webcam or reported by the Washington VAAC, rose as high as 1 km above the summit crater and drifted mainly NW, W, and SW. Crater incandescence and incandescent blocks rolling 600-800 m down the NE and S flanks were observed on some nights. A new lava flow was active on the N flank. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well E of the principal volcanic axis. It is a forested stratovolcano that rises above the remote jungles of the western Amazon basin. A 3-km-wide caldera breached to the E was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1,300 m above the caldera floor. Reventador has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. (GVN/GVP) - IG webcam

ECUADOR - Sangay volcano

August 26th, 2021

IGEPN reported gas-and-ash emissions from Sangay rising 500-1,500 m above the summit that drifted W and SW during 19-20 and 24 August. During 20-23 August gas-and-steam plume rose 1-2 km above the summit and drifted W, SW, and NW. Weather clouds and rain sometimes prevented visual and webcam observations of the volcano. Ash plumes were identified in satellite images by the Washington VAAC. IGEPN reported a high level of activity at Sangay during 15-22 June. Weather clouds and rain often prevented visual and webcam observations of the volcano; almost daily lahars were detected by the seismic network. Ash plumes were identified in satellite images by the Washington VAAC ash plumes almost daily, rising as high as 1.2 km above the volcano and drifting W and SW. Thermal anomalies continued to be often visible in satellite data.IGEPN reported that on hursday, May 27, 2021 from 6:40 TL, the SAGA seismic station of the Sangay volcano in Ecuador records a tremor signal probably linked to the eruptive activity of the volcano. The signal amplitude is low compared to the most active pulses of the current eruptive period of the volcano. Therefore, there is a low probability of ash fall in the areas surrounding the volcano, mainly in the province of Chimborazo. The IG-EPN continues to monitor the event and informs of 9 explosions on May 27, 5 episodes of emission tremor, confirmed by the VAAC Washington with plumes at max. 2,670 meters above the crater, drifting west and southwest, and 4 LP earthquakes. IGEPN reported a high level of activity at Sangay during 12-18 May. Weather clouds and rain often prevented visual and webcam observations of the volcano; daily lahars were detected by the seismic network. Ash plumes rose 900-1,200 m and drifted W during 14-15 May. Several dense ash emissions were identified in satellite images on 16 May. According to the Washington VAAC ash plumes rose as high as 12.2 km (40,000 ft) a.s.l. and drifted N; part of the ash plume drifted WSW at 6.4 km (21,000 ft) a.s.l. Minor ashfall was reported in the local community of Ishupamba (Province of Chimborazo), near the volcano. Ash plumes rose 1.2-1.5 km above the volcano and drifted WSW and SW during 17-18 May.IGEPN reported that on morning, April 22, an emission of gas and ash from the Sangay volcano, in Ecuador, was observed on the GOES-16 satellite. This emission is directed towards the west of the volcano and there is a probability of ash fall in some populations of the provinces of Chimborazo, Bolivar and Los Ríos. It is recommended to take the necessary precautions.IG reported a high level of activity at Sangay during 24-30 March. Seismicity was characterized by 1-8 daily explosions, long-period earthquakes, and signals indicating emissions. Weather clouds and rain often prevented visual observations of the volcano, though based on the Washington VAAC reports, daily ash plumes were noted rising as high as 2.1 km above the summit and drifting in different directions. Images shared by the Red de Observadores Volcanicos (ROVE) (Network of Volcanic Observers) showed gas-and-steam emissions reaching 900-1,000 m above the crater drifting N on 26-27 March. A seismic station recorded occasional debris flows during 24-30 March. No ashfall was reported by residents.IG reported a high level of activity at Sangay during 17-23 March seismicity was characterized by daily explosions, long-period earthquakes, and signals indicating emissions. Weather clouds and rain often prevented visual observations of the volcano, though based on the Washington VAAC, webcam images, and observer reports, ash plumes were noted most days rising as high as 1.5 km above the summit and drifting mainly N, W, and SW. A seismic station recorded occasional debris flows during 17-19 March. No ashfall was reported by residents.IG reported a high level of activity at Sangay during 10-16 March. Seismicity was characterized by daily explosions, long-period earthquakes, and signals indicating emissions. Weather clouds often prevented visual observations of the volcano, but satellite and webcam images recorded daily ash plumes. Ash plumes were notable during 10-11 March and impacted communities downwind with ashfall. Pyroclastic flows, visible in webcam images, descended the flanks at 0950 on 10 March. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes and its most active. The steep-sided, glacier-covered, dominantly andesitic volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex. (GVN/GVP)

ECUADOR - Cuicocha - Cotachi

October 6th, 2018

IG reported that, after an earthquake swarm consisting of 62 volcano-tectonic events during 2-3 October, seismicity at Cuicocha returned to background levels on 4 October. Carbon dioxide levels were normal, and deformation data did not show any anomalies. IGEPN reported an increase of the seismic activity of the Cuicocha-Cotacachi volcanic complex in Ecuador. During the days of October 2nd and 3rd, 60 VT earthquakes associated with rock fracturing were recorded; almost all earthquakes are located near the Cuicocha volcano. Ten earthquakes, the strongest of magnitude 2.5 occurred on October 2 at 10:58 local time, were reported as significant by Quiroga population. The scenic lake-filled Cuicocha caldera is located at the southern foot of the sharp-peaked Pleistocene Cotacachi stratovolcano about 100 km N of Quito. Both Cotacachi and Cuicocha were constructed along the Otavalo-Umpalá fracture zone. Eruptive activity began about 4500 years ago and continued until about 1300 years ago. The 3-km-wide, steep-walled caldera was created during a major explosive eruption about 3100 years ago that produced nearly 5 km3 of pyroclastic-flow and fall deposits. Four intra-caldera lava domes form two steep-sided forested islands in the 148-m-deep lake. A pre-caldera lava dome is situated on the outer E side of the caldera. Pyroclastic-flow deposits cover wide areas around the low-rimmed caldera, primarily to the east. Gas emission continues from several locations in the caldera lake.The last historical eruption dates back to the year 650. (GVN/GVP)

ECUADOR - Sierra Negra volcano (Galapagos)

September 2nd, 2018

As of the 1st of September IG reported that due to the continuous decrease in seismic energy levels, reaching even earlier values ​​at the beginning of the eruptive period from June to August 2018 at the Sierra Negra volcano, and the decrease in the number of thermal alerts and SO2 emission , the IGEPN reported the possible end of the eruptive activity or the entry into a period of calm after 58 days of eruption. By 25 August the lava flows in total covered an area of 30.6 square kilometers. Activity continued to decline the last week of August with decreased
seismicity, gas emission, and no surficial activity visible. . IG reported that during 20-21 August both steam-and-gas emissions and incandescence from lava flows were visible on the Sierra Negra webcam. No activity was noted when the weather was clear during 22-28 August. On 15 August satellite images showed lava from Fissure 4 continuing to enter the ocean. IG reported that the eruption at Sierra Negra continued during 7-14 August. Incandescence from active NNW lava flows was visible almost nightly. A steam-and-gas plume rose 1.8 km a.s.l. and drifted W on 7 August. IG reported that on August 9, at 17:45 GMT, the tremor increased in amplitude, in relation with a new surge of activity on the northern flank.
Seismicity is further characterized by 52 volcano-tectonic earthquakes, and 6 LP earthquakes.The largest earthquake occurred at 10:55 am M3,1 TG and a depth of 2 km. IG reported that the eruption at Sierra Negra continued during 1-7 August. Incandescence from active lava flows was visible daily. An increase of tremor began at 2220 on 3 August and lasted two hours, signifying a new pulse of activity on the N flank. Small gas emissions were visible on 4 August, and steam-and-gas emissions were noted on 6 August. IG reported that the eruption at Sierra Negra continued during 25-31 July. Sulfur dioxide flux was as high as about 1,400 tons per day (on 28 July), and daily counts of volcano-tectonic and long-period events were 24-65 and 3-32, respectively. Nightly incandescence from advancing lava flows was visible. Gas plumes rose more than 1.8 km above the vents and drifted N, NW, and W. As of the 20th of July, IGEPN reported that the activity remains unchanged, at a superficial and high internal level.During the last measurement period, 18 to 19 July at 11am, the number of VT earthquakes decreased, with 39 events; the number of LP earthquakes is 11.The gas emissions are at least 1,800 meters above sea level, and go to the WNW.Nighttime glow is observed at the emission points, and on the lava flows.As of the 10th of July, IGEPN reported that Sierra Negra's surface and internal activity levels remain high. The eruptive process continues, as evidenced by numerous volcano-tectonic earthquakes and emission tremor; thermal anomalies are noted as well as the emission of a plume of vapor, gas and ash rising to 2,400 meters in height, then moving towards the southwest sparing the populated areas for the moment. Lava flows come from a source located in the lower part of the northwestern flank of the volcano; the emission of lava would have increased significantly since July 7 at 17h local. From July 2nd to 3rd at 11am local time, the IG reports 241 volcano-tectonic earthquakes, 37 LP earthquakes and 2 VLP earthquakes. During the last 24 hours, about fifty volcanic earthquakes have been located at a depth of less than 5 km; the strongest was on the east flank of the volcano, at a depth of 2 km, with a magnitude of 3.4.The satellite images show gas and vapor emissions, and the presence of lava flows. IGEPN reported that after a small earthquake on July 1, 2018 at 15:52 GMT, tremor appeared. At 18 o'clock, the National Park staff reports incandescence and the presence of lava flows on the northwest flank of the volcano. The IGEPN informs, for the period from 01 to 11 am to 02 July at 11 am, 286 volcano-tectonic earthquakes, 43 LP earthquakes, 3 VLP earthquakes and emission tremor. An ash emission was mounted 1,000 meters above the crater, then headed west. IGEPN reported that the activity of the past 12 hours was characterized by a gradual decrease in seismic and acoustic tremor, but these signals nevertheless indicate the continuation of the eruption with a lower intensity.One hundred and two volcano-tectonic earthquakes have been recorded; the largest, with a magnitude of 3.3, is located south of the caldera at a depth of 4.3 km. The others are located at a shallower depth, and in the western part of the caldera. Previously, IGEPN and PNG reported that following a rise in seismicity for some months, and some more recent major earthquakes, including one of M 4.2 on June 22 at 6:24 GMT and another of M 5.3 on June 26 at 3:15 GMT under the Sierra Negra volcano / Isabela Island to the Galapagos, the seismicity was marked by replicas and tremor. On June 26, from 11:17 am TG, a new seismic swarm began in Sierra Negra; earthquakes are characterized by a depth of between 3 and 5 km and a magnitude of 4.6 maximum. Since the earthquake of M 4,2 at 13:38 TG, the amplitude of seismicity and infrasonic signals has greatly increased. Galapagos National Park staff reported rumbles from the volcano. all these signs suggest the beginning of the eruptive process. Images from the GOES-16 Satellite show a strong thermal anomaly in the northern area of ​​the caldera. The Park staff then reported lava flows inside the caldera and on the northern flank of the volcano towards Bahia Elizabeth. As Isabela Island is populated, the authorities have ordered the evacuation of 50 residents, who will be cared for by host families; tourist access to the Sierra Negra volcano area and the El Cura area is restricted. On 8 June IG reported a continuing high level of seismicity at Sierra Negra, characterized by a larger number and magnitude of earthquakes, indicating magma movement. The number of events per day had been significantly increasing since mid-2016. In the previous 10 days there was an average of 42 local events/day; on 25 May there were 104 events, the largest number of earthquakes per day recorded since 2015. In addition, in a 24-hour period during 7-8 June there were a total of 48 volcano-tectonic events, two long-period events, and three hybrid earthquakes; a M 4.8 long-period earthquake was recorded at 0715 on 8 June. The earthquake epicenters were mainly located on the edges of the crater, in two NE-SW trending lineaments; the first covered the N and W edges of the crater and the second went from the NE part around to the S edge. Data showed very large deformation at the caldera's center, compared with lower levels of deformation outside of the caldera. The broad shield volcano of Sierra Negra at the southern end of Isabela Island contains a shallow 7 x 10.5 km caldera that is the largest in the Galápagos Islands. Flank vents abound, including cinder cones and spatter cones concentrated along an ENE-trending rift system and tuff cones along the coast and forming offshore islands. The 1124-m-high volcano is elongated in a NE direction. Although it is the largest of the five major Isabela volcanoes, it has the flattest slopes, averaging less than 5 degrees and diminishing to 2 degrees near the coast. A sinuous 14-km-long, N-S-trending ridge occupies the west part of the caldera floor, which lies only about 100 m below its rim. Volcan de Azufre, the largest fumarolic area in the Galapagos Islands, lies within a graben between this ridge and the west caldera wall. Lava flows from a major eruption in 1979 extend all the way to the north coast from circumferential fissure vents on the upper northern flank. Sierra Negra, along with Cerro Azul and Volcan Wolf, is one of the most active of Isabela Island volcanoes. (GVN/GVP)

ECUADOR - Fernandina volcano (Galapagos)

January 25th, 2020

IGEPN reported that the seismic activity which following the January 12, 2020 eruption has not returned to basic levels (pre-eruption); on the contrary, seismicity increased, presenting sporadic earthquakes of magnitude greater than M 3.0 and small seismic swarms which have evolved over time. The strongest earthquake was recorded on January 21, 2020 with a magnitude of 4.2. In addition, a ground deformation of about 35 cm was detected in the emission zone of the lava flows. The preliminary estimate of the lava flows emitted on January 12, 2020, located east of the volcano, indicates that they cover an area of ​​approximately 3.8 km², a value lower than the estimates of the previous circumferential eruptions (2017 and 2005) .IGEPN reported that the eruption hich started shortly before 6.10 p.m. on January 12, 2020, from a circumferential crack located under the eastern edge of the caldera to an altitude of about 1300-1400 m above sea level, caused the emission of lava flows on the eastern flank. A cloud of volcanic gas was also observed at a height of approximately 1500-2000 m above the level of the crack (~ 3-3.5 km above sea level) and moving towards the west -North West. The eruption was observed by the park guards of the Galapagos National Park from the Bolivar Canal station. In the past few hours, the level of seismic activity, the emission of volcanic gas and thermal anomalies have decreased significantly, indicating a rapid decrease in eruptive activity, similar to what happened in 2017 and 2018. It is important to indicate that on other occasions (Fernandina 2009, Wolf 2015, Sierra Negra 2018), an initial drop in initial activity was followed by a second eruptive phase. IGEPN reported that following a seismic crisis, an eruption occurred on January 12, 2020, around 10 local Galapagos time. After the 4.7M magnitude seismic event occurred at 4:42 p.m., 29 localized events were recorded, the magnitude of which remained below 3.1. Eruptive activity is located east of Fernandina Island along a circumferential fissure.Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 km3 section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake. (GVN/GVP)

***************************************************************************************************************************************************************************************************

Tungurahua volcano from Pelileo

MEXICO - Popocatepetl volcano

September 15th, 2021

CENAPRED reported that an an explosion was reported on 14th of September at 11:50 p.m., accompanied by the expulsion of incandescent fragments on the sides of the volcano and a plume of ash. CENAPRED reported that during the last 24 hours, thanks to the monitoring systems of the Popocatépetl volcano, 130 exhalations have been identified, probably accompanied by volcanic gases and light amounts of ash. There were also 379 minutes of low to medium amplitude tremor. In addition, three explosions were recorded, one moderate on 13 at 12:05, and two small on 14.09 at 08:46 and 08:59. The 8.46 am explosion was preceded by a gradual increase in degassing; the eruptive plume is minted at a height of 1,500 meters above the crater, dispersing towards Puebla. The volcanic alert remains at Amarillo fase 2. As of the 11th of September CENAPRED reported that during the last 24 hours, thanks to the monitoring systems of the Popocatépetl volcano, 128 exhalations accompanied by water vapor, volcanic gases and low ash content have been identified. In addition, 753 minutes of low amplitude tremor were identified, as well as an explosion, recorded today at 1:34 am. A total of 14 explosions have been recorded by since September 2. From morning until 11 a.m., the crater was observed with a slight emission of water vapor, gas and light amounts of ash in a southwest direction. As of the 8th of August, CENAPRED reported that during the last 24 hours, 30 exhalations have been identified, some of them accompanied by water vapor, volcanic gases and ash. In addition, 789 minutes of tremor were recorded, and an explosion at 2:58 a.m., due to weather conditions, its height and direction could not be determined. On August 7 at 7:37 p.m., a volcano-tectonic earthquake with a calculated magnitude of 1.6 was recorded. During the morning and at the time of this report, the emission of volcanic gases with a westerly direction was observed. CENAPRED reported that on July 16, there were two explosions respectively at 8:01 p.m. and 8:43 p.m. accompanied by the emission of water vapor, gas and ash. The emission reached an average height of 900 m in a westerly direction. On July 17 from 1:50 a.m., a low amplitude tremor episode started and at 3:50 a.m. the amplitude increased with a continuous emission of water vapor, gas and ash, in addition to incandescent fragments were observed at short distance. At 3:40 a.m. a high amplitude tremor episode began which continues at this time with a continuous emission of water vapor, gas and ash towards the west. CENAPRED reported that each day during 6-13 July there were 47-112 steam-and-gas emissions from Popocatépetl. Some emissions contained ash during 8-13 July. Almost daily periods of low-amplitude tremor lasted from 10 minutes to five hours. A few volcano-tectonic earthquakes were recorded. Crater incandescence was visible at night during 12-13 July. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale).CENAPRED reported that the activity of the volcano continues at low levels over the past month. The volcano is currently a bit calmer than usual, with only venting of water vapor and gases emissions from the summit crater. The degassing activity produced 102 emissions with small amounts of ash which drifted SW.CENAPRED reported that each day during 2-8 June there were 87-136 steam-and-gas emissions with minor amounts of ash from Popocatepetl and periods of low-amplitude tremor lasting from five minutes to about three hours and 40 minutes. Minor crater incandescence was visible overnight during most nights. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale). CENAPRED reported that each day during 13-20 April there were 14-34 steam, gas, and ash emissions from Popocatepetl and periods of tremor lasting from 5-15 hours. Two volcanic earthquakes were recorded at 1054 and 2354 on 16 April. Minor crater incandescence was visible overnight during 17-18 April. A M 1.3 volcano-tectonic earthquake was recorded at 2057 on 18 April. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale).As of the 13th of march, CENAPRED reported that during the last 24 hours, 63 exhalations and 487 minutes of tremor have been identified, accompanied by emissions of water vapor, volcanic gases and small amounts of ash. Based on information from the National Communications Center (CENACOM), on 12th of March a slight fall of ash was reported in the municipalities of Amecameca and Tlalmanalco around 22:50. Meanwhile, a constant emission of water vapor, gas and small amounts of ash was observed, which is dispersed in a north-westerly (NW) direction. The recent flyby confirmed that there was no lava dome inside the crater. As of the 6th of March, CENAPRED reported that during the last 24 hours 82 exhalations and 234 minutes of tremor have been identified, accompanied by emissions of water vapor, volcanic gases and small amounts of ash. Since March 6 in the morning, we observe an intermittent emission of volcanic gases and sometimes ash, which disperse in an east-south-east direction. As part of the monitoring of the Popocatépetl volcano, expert staff from the Institute of Geophysics of the National Autonomous University of Mexico (UNAM) and the National Center for Disaster Reduction (CENAPRED), carried out an overview, with the support of the National Guard, yesterday March 5, 2021. It has been observed that the inner crater maintains a diameter of 360-390 meters and an approximate depth of 150-180 meters, which is covered with various fragmented materials (tephra). Likewise, it was confirmed that there was no lava dome inside the crater. As of the 23rd of February, CENAPRED reported that during the last 24 hours, thanks to the monitoring systems of the Popocatépetl volcano, 25 exhalations accompanied by emissions of water vapor, volcanic gases and small amounts of ash have been identified. In addition, two explosions, the first yesterday at 12:46 p.m. on February 22 and the last on February 23 at 1:23 a.m., for a total of thirteen explosions in the last 6 days. During the night, a slight incandescence could be observed above the crater. Since the morning of February 23, a constant light emission of water vapor and volcanic gases has been observed, which disperse towards the west. As of the 11th of February, CENAPRED reported that during the last 24 hours, 53 exhalations have been identified accompanied by emissions of water vapor, volcanic gases and small amounts of ash, in addition to 2 minor explosions that occurred on the 10th February at 10:58 p.m. and February 11 at 8:28 a.m. In addition, 238 minutes of low amplitude tremor and 21 volcanotectonic earthquakes were recorded. During the night a slight incandescence could be observed above the crater. Between 0 a.m. and 5 p.m., a constant emission of volcanic gases and light amounts of ash was observed, which are dispersed in a north-northeast direction. CENAPRED reported that each day during 3-9 January there were 14-34 steam, gas, and ash emissions from Popocatepetl. Minor crater incandescence from the crater was visible during a few of the nights. An explosion at 2138 on 6 February generated an eruption plume with low ash content that rose 2 km above the summit and drifted NE. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale).CENAPRED reported tat over the past week, the activity of the volcano has remained at moderately high levels. On 19 January at about 15:00 local time a powerful eruption occurred from the summit crater generated an increasingly tall and dense dark ash plume that rose to estimated 23,000 ft (7,000 m) altitude and drifted N. At the end of December 2020, daily volcanic tremor duration increased to approx. 1000 min / day around which value it has been decreasing on 13 and 14 January (500 min / day) and started to increase again on 15 January until yesterday when the highest value in January was recorded (1319 minutes). This event as well as near-constant emissions of gas and small amounts of ash suggest continued rise of fresh magma probably accumulating as a new lava dome in the inner summit crater. As of the 17th of January, CENAPRED reported that during the last 24 hours, thanks to the monitoring systems of the Popocatépetl volcano, 16 exhalations and 981 minutes of tremor have been identified, accompanied by emissions of water vapor, volcanic gases and small amounts of ash. In addition, three minor explosions were recorded, two on January 16th at 12:41 p.m. and 4:51 p.m., and the last one on january 17th at 8:36 a.m. Visibility is partial, but allowed to observe a slight emission of water vapor, gas and a slight quantity of ash, which disperses towards the northeast. CENAPRED reported that each day during 5-12 January there were 11-31 steam, gas, and ash emissions from Popocatepetl. Minor ashfall was reported in several municipalities in Puebla including San Salvador el Verde (30 km NNE), Atlixco (23 km SE), San Andres Cholula (35 km E), San Nicolas de los Ranchos (15 km ENE), and Domingo Arenas. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale). CENAPRED reported that 106 exhalations and 980 minutes of tremor were recorded accompanied by emissions of volcanic gases and ash, with a plume reaching a maximum height of 600 m., Dispersed mainly towards the northeast. In addition, an explosion was recorded on 1st of January at 3:14 am accompanied by the expulsion of some incandescent fragments a short distance from the crater. In the early morning and until 5 p.m., emissions of volcanic gases and ash are observed, which disperse in a northeast direction. Previous news 2020 - As of the 30th of December, CENAPRED reported that during the last 24 hours the monitoring systems of the  volcano recorded 39 exhalations and 1070 minutes of tremor have been identified, accompanied by emissions of volcanic gases and ash, sometimes the column had a maximum height of 1000 m and was dispersed mainly to the northeast. In the morning, emissions of volcanic gases and ash are observed, which disperse to the northeast. As of the 19th of December, CENAPRED reported that during the last 24 hours, thanks to the monitoring systems of the Popocatépetl volcano, 225 exhalations have been identified, accompanied by emissions of water vapor, volcanic gases and small amounts of ash. In addition, 109 minutes of low amplitude tremor were recorded.During the night, and in the morning, a light emission of water vapor and gas was observed, at the time of this report there is a partial visibility of the volcano, any emission will have a northeast direction. As of the 8th of December, CENAPRED During the last 15 days, there has been a slight increase in the activity of Popocatépetl with more frequent ash emissions. Explosions occurred on December 4, 5 and 6. CENAPRED reported that each day during 4-10 November there were 364-504 steam-and-gas emissions from Popocatepetl, some of which contained minor amounts of ash. Gas-and-steam plumes drifted NW, SW, and SE. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale). As of the 23rd of Ocotober, CENAPRED reported that explosive activity continues from the active crater with near-constant ash emissions producing vulcanian-type explosions. Plume of ash rose to an altitude of 20,000 ft (6,100 m) and drifted SW. CENAPRED recorded 267 emissions of steam, gases and small amounts of ash. Seismic instruments detected 221 minutes of tremor. On October 16, with the support of the National Guard, expert staff from the Institute of Geophysics of the National Autonomous University of Mexico (UNAM) and the National Center for Disaster Reduction (CENAPRED), an overview of the Popocatépetl volcano been carried out to verify its terms and conditions. It has been visualized that the inner crater maintains a diameter of 360 to 390 meters and the approximate depth is 120 to 170 meters; the interior of the crater is covered with tephra.CENAPRED reported that each day during 6-13 October there were 84-143 steam-and-gas emissions from Popocatepetl, most of which contained minor amounts of ash. Gas-and-ash plumes drifted NE, WNW, W, and SSW. Minor ashfall was reported during 6-7 October in areas downwind including the municipality of Tetela del Volcán (20 km SW) in the State of Morelos, and the municipalities of Amecameca (20 km NW), Atlautla (17 km W), Ayapango (22 km NSW), and Ecatzingo (15 km SW) in the State of Mexico. Incandescence from the crater was observed during 11-12 October and occasionally intensified with some emissions. Ashfall was reported in Amecameca on 13 October. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale). As of the 4th of October, CENAPRED reported that during the last 24 hours, 105 exhalations accompanied by volcanic gases and sometimes small amounts of ash have been identified. In addition, 500 minutes of tremor were recorded. During the night and today in the morning, emissions of water vapor, gas and ash were observed towards the north-west. CENAPRED reported that each day during 16-21 September there were 52-121 steam-and-gas emissions from Popocatepetl, most of which contained minor amounts of ash. Weather clouds often obscured views of the volcano. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale). As of the 5th of September, CENAPRED reported that during the last 24 hours, 177 exhalations have been identified at Popocatépetl, accompanied by volcanic gases and sometimes small amounts of ash; that due to the weather conditions in the area, it could only be seen at certain times. In addition, 354 minutes of low and medium amplitude tremor were recorded. The VAAC Washington issued an ash scatter advisory, with a plume reaching 6,100 meters above sea level, or about 670 meters above the summit. CENAPRED reported that each day during 25 August-1 September there were 96-331 steam-and-gas emissions from Popocatepetl, some of which contained minor amounts of ash. The Alert Level remained at Yellow, Phase Two (middle level on a three-color scale). As of the 23rd of August, CENAPRED reported that over the past 24 hours, the volcano monitoring system has identified 153 exhalations accompanied by volcanic gases and sometimes small amounts of ash, reaching up to 1,100 meters above the crater, drifting southwest In addition, 840 minutes of low amplitude tremor associated with the constant emission of water vapor, gas and low ash content were recorded. During the night, an incandescence was observed inside the crater, and the constant emission of water vapor and gas in a south-easterly direction, which continues in the morning of August 23. As of the 14th of August, during the last 24 hours, 36 exhalations have been identified some accompanied by volcanic gases and sometimes small amounts of ash. In addition, 189 minutes of low amplitude tremor were recorded,that began on August 14 at 7:25 a.m., accompanied by an emission of ash from a height of 600 m above. above the crater; the ash emission then continued. Ash falls are possible in my municipalities of Amecameca, Chalco, Atlautla, Ozumba, Cocotitlan and Tlalmanalco.During the night, the volcano was partially visible, and a constant emission of volcanic gases and an incandescence above the crater could be observed. As of the 4th of July, CENAPRED reported that over the past 24 hours has identified 16 exhalations accompanied by volcanic gases and sometimes small amounts of ash at Popocatépetl.In addition, 1292 minutes of tremor were recorded, generated by a constant emission of volcanic gases and light ash, which disperse towards the northwest. It was also recorded yesterday at 1:57 p.m., a moderate explosion which, due to weather conditions, could not determine the height of the column. During the night, there was partial visibility of the volcano, however, an incandescence could be observed above the crater.Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, rises 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 CE, have occurred since the mid-Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since Pre-Columbian time. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages. (GVN/GVP) . - Live cam of Popocatepetl -

Popocatepetl volcano (Mexico)

MEXICO - Colima volcano

July 16th, 2019

Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported that intermittent steam-and-gas emissions, mainly from the NE side of the crater, and two small explosions were recorded during 5-12 July. Five lahars descended the Montegrande ravine. An overflight on 9 July revealed that the diameter of the vent had slightly increased, likely caused by subsidence, and other areas of minor subsidence within the crater were noted. An area of collapsed material on the outer W wall was also identified. Temperatures inside the crater were 116 degrees Celsius, lower than the temperature of 250 degrees Celsius recorded in May. The temperatures in the fumarolic area decreased from 202 degrees Celsius in May to 169 degrees. A thermal camera located S of the volcano recorded thermal anomalies associated with fumarolic emissions. Weather conditions sometimes prevented observations of the crater.Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported that intermittent steam-and-gas emissions, mainly from the NE side of the crater, and three small explosions were recorded during 29 June-5 July. A thermal camera located S of the volcano recorded thermal anomalies associated with emissions. Weather conditions sometimes prevented observations of the crater.Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported that intermittent steam-and-gas emissions mainly from the NE side of the crater and small explosions continued to be recorded during 8-14 June. Weather conditions often prevented visual observations of the crater. Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported that small explosions and intermittent steam-and-gas emissions, originating mainly from the NE side of the crater, continued to be recorded during 1-7 June. Weather conditions often prevented visual observations of the crater. Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported that during 25-31 May small explosions and intermittent steam-and-gas emissions mainly from the NE side of the crater continued to be recorded. During overflights conducted during 23-24 May scientists observed that the new feature (a crack or cavity) reported the previous week had become a hole due to the combination of excavation due to explosions and probable subsidence. The maximum temperature recorded with a portable thermal camera was 252 degrees Celsius, an increase of 80 degrees since recorded on 1 May. Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported that 51 low-magnitude explosions mainly from the NE part of Colima’s crater were recorded by the seismic and infrasound network during 11-24 May. Emissions from the explosions consisted mainly of water vapor and gas, and were the first surficial manifestations of activity since seismicity increased in the past few weeks. Footage from five drone overflights conducted on 22 May showed fumarolic activity on the inner wall of the NE part of the crater and a new small explosion crater near the center of the main crater.Centro Universitario de Estudios e Investigaciones de Vulcanologia - Universidad de Colima reported increased seismicity at Colima during 20-26 April characterized by a considerable increase in the number of high-frequency and volcano-tectonic events. On 26 April a consensus was reached to raise the Alert Level to Yellow (the second lowest level on a four-color scale) and extend the exclusion zone to a 8-km radius during a meeting of the Coordinación Nacional de Protección Civil (CNPC), the Unidad Estatal de Protección Civil Colima (UEPC), the Unidad Estatal de Protección Civil y Bomberos de Jalisco (UEPCBJ), the Universidad de Colima (UdeC), and la Universidad de Guadalajara (UdeG). Seismicity continued to be elevated through 3 May. The largest events (M 2.4-3) were located 0.5-3 km deep in the N and NE parts of the volcano. The Colima volcanic complex is the most prominent volcanic centre of the western Mexican Volcanic Belt. It consists of two southward-younging volcanoes, Nevado de Colima (the 4320 m high point of the complex) on the north and the 3850-m-high historically active Volcán de Colima at the south. Frequent historical eruptions date back to the 16th century. Occasional major explosive eruptions (most recently in 1913) have destroyed the summit and left a deep, steep-sided crater that was slowly refilled and then overtopped by lava dome growth. Colima's web video camera - Colima data base - new webcam *************************************************************************************************************************************************************************************************

GUATEMALA - Fuego volcano

September 15th, 2021

INSIVUMEH reported that a lava flow has been observed since September 13 in the barranca Ceniza, with an approximate length of 150 to 200 meters. Mirova reports moderate thermal anomalies on September 13 and 14, between 75 and 31 MW. Weak white fumaroles and explosions accompanied by ash have been observed at night and early in the morning in a range of 8 to 12, which rise to an approximate height of 4500 to 4700 m., dispersing in a southwest direction generating ash fall in areas close to the area. Incandescent pulses were observed rising 300 above the crater, accompanied by a faint white fumarole. Constant avalanches of boulders were heard in the direction of the barrancas Ceniza, Taniluya, Trinidad and Santa Teresa, some of the material reached the edge of the vegetation. INSIVUMEH reported that 6-13 explosions per hour were recorded during 18-25 August at Fuego, though the weather sometimes prevented visual confirmation. The resulting ash plumes rose to 4.5-4.8 km and drifted as far as 15 km W, SW, S, and NW, causing daily ashfall downwind in Panimache I and II (8 km SW), Morelia (9 km SW), Santa Sofia (12 km SW), Yucales (12 km SW), El Porvenir (8 km ENE), and Yepocapa (8 km NW). White gas-and-steam plumes rose to 4.5 km (14,764 ft) a.s.l. on 19 and 25 August. Shock waves often rattled buildings around the volcano as far as 15 km from the summit. Block avalanches accompanied the explosions, descending the Santa Teresa, Ceniza (SSW), Taniluye (SW), Trinidad (S), Seca (W), Las Lajas (SE), and Honda drainages, sometimes reaching vegetated areas. Incandescent ejecta was visible rising 100-400 m above the summit during the nights and early mornings of 20-23 August. INSIVUMEH reported that 4-13 explosions per hour were recorded during 3-10 August at Fuego, generating ash plumes as high as 1.1 km above the crater rim and shock waves that often rattled buildings around the volcano. Ash plumes mostly drifted as far as 15 km W and SW, causing daily ashfall in several areas downwind, including Morelia (9 km SW), Panimache (8 km SW), Santa Sofia (12 km SW), Yucales (12 km SW), El Porvenir (8 km ENE), Finca Palo Verde, Sangre de Cristo (8 km WSW), and San Pedro Yepocapa (8 km NW). Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluye (SW), Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Explosions ejected incandescent material 100-400 m above the summit during 4-6 and 9-10 August. At 1700 on 6 August a lahar descended the Las Lajas drainage, carrying fine material along with tree branches and blocks 1-2 m in diameter.INSIVUMEH reported that 5-15 explosions per hour were recorded during 13-20 July at Fuego, generating ash plumes as high as 1.1 km above the crater rim and shock waves that often rattled buildings around the volcano. Ash plumes mostly drifted 10-20 km NW, W, and SW and caused daily ashfall in several areas downwind, including Morelia (9 km SW), Panimache I and II (8 km SW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Finca Palo Verde, Sangre de Cristo (8 km WSW), and San Pedro Yepocapa (8 km NW). Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluye (SW), Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Explosions ejected incandescent material 100-400 m above the summit during 13-19 July.INSIVUMEH reported that on July 3, 2021 from 3 to 5 explosions per hour, accompanied by ash plumes at 4,500-4,700 m. asl. scattered in a north and west sector. Meanwhile, a white to gray degassing column was observed at 4,400 m Asl. Ash fallout is sporadic, between weak to strong, on the communities of San Miguel Duenas, Parramos, Jocotenango and Chimaltenango; Avalanches were reported in the direction of the Ceniza, Trinidad, Raniluya, Santa teresa and Las Lajas barrancas, part of which reaches the vegetation limit. INSIVUMEH reported that on 24 June lahars resulting from substantial rainfall descended the Las Lajas and El Jute drainages on Fuego's ESE flank, carrying tree branches, trunks, and blocks as large as 1 m in diameter. During 23-29 June there were 4-15 explosions per hour, generating ash plumes as high as 1.1 km above the crater rim. Daily shock waves rattled buildings in towns around the volcano. Ashfall was reported daily in several areas downwind, including Panimache I and II (8 km SW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), La Rochela, El Zapote, and Sangre de Cristo (8 km WSW). Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluyá (SW), Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Explosions ejected incandescent material 100-400 m above the summit each day. INSIVUMEH reported that on 15 June lahars descended the Las Lajas and El Jute drainages on Fuego's SE flank, carrying tree branches and blocks as large as 1.5 m in diameter. During 16-22 June there were 4-15 explosions per hour, generating ash plumes as high as 1.1 km above the crater rim. Daily shock waves rattled buildings in towns around the volcano, and within 15 km of the S and SW flanks during 20-21 June. Ashfall was reported almost daily in several areas downwind, including Panimache I and II (8 km SW), Santa Sofia (12 km SW), Sangre de Cristo (8 km WSW), and San Pedro Yepocapa (8 km NW). Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluya (SW), Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Explosions ejected incandescent material 100-350 m above the summit each day.INSIVUMEH reported that 5-13 explosions per hour were recorded during 1-8 June at Fuego, generating ash plumes as high as 1.1 km above the crater rim. Shock waves often rattled buildings around the volcano. Ashfall was reported almost daily in several areas downwind, including Morelia (9 km SW), Panimache I and II (8 km SW), Santa Sofia (12 km SW), El Porvenir (8 km ENE), Sangre de Cristo (8 km WSW), and San Pedro Yepocapa (8 km NW). Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluya (SW), Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Explosions ejected incandescent material 100-350 m above the summit on most days. INSIVUMEH reported that 5-14 explosions were recorded per hour during 21-27 April at Fuego, generating ash plumes as high as 1.1 km above the crater rim. Shock waves rattled buildings around the volcano, especially in areas as far as 20 km W and SW. Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluyá (SW), Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Ashfall was reported on most days in several areas downwind including Morelia (9 km SW), Panimache I and II (8 km SW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), Sangre de Cristo (8 km WSW), and San Pedro Yepocapa (8 km NW). Explosions ejected incandescent material 100-400 m above the summit almost daily.As of the 26th of April INSIVUMEH reported that thermal anomalies were visible in recent days. Moderate to strong explosions at a rate of 9 to 12 per hour, are accompanied by shock waves and plumes of gas and ash reaching 4,500-4,600 m. asl., with dispersion towards the southwest. Ash falls are reported on Morelia, Santa Sofia, Panimache. The activity generates avalanches of boulders in the direction of the various barrancas. INSIVUMEH reported that 6-11 explosions per hour were recorded during 24-30 March at Fuego, generating ash  plumes that rose to 4.7 km (15,000 ft) a.s.l.and drifted W, NW, and SW as far as 10-15 km. Shock waves rattled buildings near the volcano. Block avalanches descended the Seca (W), Ceniza (SSW), and Trinidad (S) drainages, often reaching vegetated areas. Ash plumes from explosions rose to 4.8 (16,000 ft) km a.s.l. and drifted N and NE on 25 March and W on 27 March far as 15-20 km, resulting in ashfall in Morelia (9 km SW), Panimache (8 km SW), Yucales (12 km SW), Sangre de Cristo (8 km WSW), Yepocapa (8 km NW), La Soledad (11 km N). Block avalanches descended the Taniluyá (SW), Las Lajas (SE), and Honda drainages, in addition to those affected on 24 March. Weak crater incandescence was observed at night and in the early morning during 26 March. Incandescent material was ejected 100-200 m above the summit on 28 March, accompanied by ash plumes that rose to 4.8 km a.s.l. and resulted in ashfall in Palo Verde, Panimache II, Sangre de Cristo, Yepocapa, and El Porvenir (8 km ENE).INSIVUMEH reported that t 4-12 explosions were recorded per hour during 17-23 February at Fuego, generating  ash plumes as high as 1.1 km above the crater rim. Shock waves rattled buildings around the volcano. Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluyá (SW), Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Ashfall was reported on most days in several areas downwind including Morelia (9 km SW), Panimaché I (8 km SW), Santa Sofía (12 km SW), El Porvenir (8 km ENE), and San Pedro Yepocapa (8 km NW). Notably, on 17 February ash plumes drifted as far as 50 km E, causing ashfall in local communities as well as in Guatemala City (city center is about 40 km ENE). Ash plumes drifted 40 km SW on 18 February. Curtains of old ash deposits remobilized by strong winds were observed during 19-21 February. Incandescent material was ejected 100-400 m above the summit during 19-22 February.As of the 15th of February, INSIVUMEH reported that the intense effusive activity that had started a few days ago from the summit crater decreased significantly and seems to ended as seismic instrument detected decreasing period of the amplitude. The lava flow in Seca western direction ceased and is now no longer active while the second lava flow in Ceniza direction on the SW flank remains active, currently about 300 m long but it is expected to reduce its length in the coming hours. INSIVUMEH reported that on February 14, the occurrence in the morning around 10:20 a.m. of two pyroclastic flows in the barranca Ceniza, and the maintenance of two active lava flows, one in the barranca Seca, 200 meters long, the another in the barranca Ceniza, 800 meters long, with avalanches at the lava front. The explosive activity is characterized by expulsions of incandescent material 150 m away. above the crater and plumes of ash at 4,200 m. asl., dispersing over a large area west, south and southwest up to 20 km. This activity is maintained at a high level. A special INSIVUMEH bulletin reports an increase in the effusive activity of Fuego from 9 p.m. on February 13th, 2021, the incandescent materials were emitted at a height of 200 meters, accompanied by noises due to the decompression of the gases, and feed a new lava flow in the direction of the barranca Seca. Boulder avalanches occur at the lava front of the two flows. The explosive activity generates an ash plume at 4,500-4,800 m. asl., moving in a west-southwest direction. The ashes could affect La Aurora International Airport. INSIVUMEH reported that 5-11 explosions were recorded per hour during 19-25 January at Fuego, generating ash plumes as high as 1.1 km above the crater rim that drifted no more than 15 km W, SW, and S. Shock waves rattled buildings around the volcano and were felt by residents as far as 12 km away. Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluyá (SW), El Jute, Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Incandescent material was ejected 100-300 m above the summit almost daily. Ashfall was reported on most days in several areas downwind including Morelia (9 km SW), Panimache I and II (8 km SW), Finca Palo Verde, Santa Sofia (12 km SW), El Porvenir (8 km ENE), and San Pedro Yepocapa (8 km NW). As of the 12th of January, INSIVUMEH reported that explosive eruption of the volcano has remained essentially unchanged at moderate to high levels. No significant change in activity has occurred since the previous update. Ongoing moderate-to-strong strombolian-to-vulcanian activity continues from the summit crater at regular intervals of 9 to 12 per hour showering the summit cone with glowing lava bombs. Incandescent material is being ejected to an approximate height of several hundred meters above the crater and caused moderate to strong avalanches of material as can be seen in the attached video. Plume of ash rose to an estimated altitude of 4,700 ft (15,420 m) and extending about 15-20 km to the NW of the volcano. INSIVUMEH reported that 3-15 explosions were recorded per hour during 29 December-5 January at Fuego, generating ash plumes as high as 1.1 km above the crater rim that drifted 7-30 km generally N, NW, W, SW, and S. Shock waves rattled buildings around the volcano and were detected as far as 25 km away. Block avalanches descended the Ceniza (SSW), Seca (W), Trinidad (S), Taniluyá (SW), El Jute, Las Lajas (SE), and Honda drainages, often reaching vegetated areas. Incandescent material was ejected 100-300 m above the summit almost daily. Ashfall was reported most days in several areas downwind including Morelia (9 km SW), Panimache I and II (8 km SW), Finca Palo Verde, Santa Sofia (12 km SW), El Porvenir (8 km ENE), Yucales, La Soledad (11 km N), San Miguel Dueas (10 km NE), and San Pedro Yepocapa (8 km NW). Previous news 2020 - INSIVUMEH reported that activity increased at 0430 on 11 December with notable avalanches of material and block-and-ash flows lava dome traveling down the W and SW flanks. Ash plumes drifted 15 km SW, causing ashfall in areas downwind including Finca Montebello, Loma Linda, and San Marcos Palajunoj. Activity remained elevated at least through 13 December; ash plumes drifted as far as 20 km W, SW, and S, and pyroclastic flows descended the flanks. As of 10th of December INSIVUMEH reported that eruptive activity continued with weak to strong explosions, at a rate of 3 to 6 per hour; ash falls were reported on Panimache, Sangre de Cristo, Ojo de Agua, Santa Isabel, and others. Moderate boulder avalanches were reported in the drainages, some boulders reach the vegetation limit. A night glowing was observed 100-200 meters above the crater. As of the 21st of November, INSIVUMEH reported that the volcano showed 4-8 weak and moderate explosions per hour, expelling plumes of gas and gray ash at an altitude of 4,500 to 4,700 meters (14,763 to 15,419 feet) which disperse mainly to the south -Where is. Some explosions are strong and cause shock waves that vibrate the roofs and windows of houses near the volcanic perimeter. The explosions are accompanied by weak and moderate avalanches, which disperse towards the ravines of Seca, Ceniza, Taniluya, Trinidad and Las Lajas. Avalanches with strong characteristics persist on the ravines of Seca and Ceniza, some of which reach the vegetation limit. Fine ash falls were recorded in the Panimaché 1 area. At night and early in the morning, reflections of incandescent pulses were observed on the crater. INSIVUMEH reported that 2-14 explosions were recorded per hour during 27 October-3 November at Fuego, generating ash plumes as high as 1.1 km above the crater rim that drifted 10-25 km generally S, SW, and W. Shock waves rattled buildings within 12 km of the summit. Incandescent material ejected 100-300 m high caused block avalanches in the Ceniza (SSW), Seca (W), Trinidad (S), Taniluyá (SW), El Jute, Las Lajas (SE), and Honda drainages; avalanches sometimes reached vegetated areas. Ashfall was reported during 30 October-3 November in several areas downwind including Morelia (9 km SW), Panimaché I and II (8 km SW), Finca Palo Verde, La Rochela, Santa Sofi­a (12 km SW), Ceylon, El Zapote (10 km S), and Sangre de Cristo (8 km WSW). INSIVUMEH reported that, during September, a total of 2,306 explosions occurred. In mid-October, 1,037 explosions were recorded, including 5 strong explosions over the last 18 hours, accompanied by white-gray plumes of 1,000 meters above the crater. On October 14 at 10 a.m., an illustrated explosion, qualified as moderate, generated an avalanche in the barranca Ceniza. As of the 27th of September, INSIVUMEH reported that explosions occurred, at a rate of 6 to 12 per hour, generate incandescent impulses 200 meters above the crater, and were accompanied by ash plumes at 4,500-4,700 meters asl., dispersing to the west and the southwest for about ten kilometers. Avalanches affecting Barancas Seca, Ceniza, Tanilyua, Trinidad, Las Lajas and Honda, some reaching the vegetation limit. Fine ashes fall on the surroundings of Panimache, Yepocapa, Sangre de Cristo, Morella and Santa Sofia.As of the 24th of September, INSIVUMEH reported that a high amplitude tremor on the southeast flank has been recorded at the volcano yesterday. According to seismic instruments a moderate to strong lahars (mud flows) were detected towards the El Jute and Las Lajas direction as the heavy rainfalls remobilised the fresh ash deposits. Larger lahars are expected including blocks with diameter between 1-2 m today. As of September 23, INSIVUMEH reported that the pattern of activity remains the same as the previous days, with weak to moderate explosions, at a rate of 12 to 18 per hour, accompanied by columns of ash reaching 4,700 meters asl. Constant avalanches from the edge of the crater are observed in the direction of the many drainages. Ash falls are reported in the areas of Panimache, Morella, Santa Sofia, Porvenir, Yucales, Sangre de Cristo and San Pedro Yepocapa. As of the 20th of September, INSIVUMEH reported that explosive eruption of the volcano continued moderate to high levels. The effusion of the lava flow in Ceniza direction has stopped and is no longer active.Near-constant strombolian explosions are associated with incandescent material that is ejected to an approximate height of 300 m above the crater with moderate to strong avalanches. As of the 12th of September, explosive activity continues. Volcanic Ash Advisory Center (VAAC) Washington warned about a volcanic ash plume that rose up to estimated 15000 ft (4600 m) altitude or flight level 150 .INSIVUMEH reported that the activity of the Fuego remained charaterzed by explosions, which generate avalanches of blocks in the direction of the various drainages, which for some reached the limit of the vegetation; the ash plumes that accompany them cause only small fallout of ash and shock waves perceptible up to 8 km from the volcano. Tthe lava flow in the Ceniza barranca was no longer active. Insivumeh reports in its special September 11 bulletin that the effusive activity of Fuego has been on the increase since the 5th of the month. Extrusion does not happen at a constant rate; the length of the lava flow in the Ceniza barranca varies from 100 to 650 meters approximately - the last daily bulletin indicates it at a length of 200 meters -, and the avalanches generated by the flow also affect the barrancas Trinidad and Tanilyua. INSIVUMEH reported that during 31 August-1st of September the first 200 m of the lava flow was active and continued to produce block avalanches. As of the 28th of August INSIVUMEH reported that 5 to 10 Vulcanian explosions, weak and moderate occurred per hour, during the night and early in the morning which expelled plumes of ash to a height of 4400 to 4700 meters above sea level, which dispersed in a north and northwesterly direction, accompanied by incandescent pulses between 150 and 300 meters high above the crater, weak and moderate avalanches channeled towards the barrancas Santa Teresa, Taniluyá, Ceniza, Trinidad, Las Lajas and Honda, some advancing to the limit of vegetation. Low, moderate and up to four loud rumblings were heard, causing sensitive shock waves up to 12 km from the volcano. The lava flow towards the barranca Ceniza remained active, with an approximate length of 400 meters and the detachment of blocks in front. As of the 26th of August, INSIVUMEH reported that that explosions occurrs at a rate of 4 to 6 per hour, accompanied by shock waves, avalanches of blocks in the direction of the Seca, Taniluya, Ceniza, Trinidad and Las Lajas drainages, some of which reach the limit of vegetation, and ash plumes at 4,500-4,700 meters above sea level. Ash falls were reported in the villages of Panimaché I, Morelia, Finca Palo Verde and Yepocapa. Incandescent pulses were observed during the night and early in the morning. INSIVUMEH reported that at 2050 on 29 July lahars descended the Las Lajas and El Jute drainages on Fuego's SE flanks. There were 6-13 explosions per hour recorded during 29 July-4 August, generating ash plumes as high as 1.1 km above the crater rim that generally drifted 15-20 km NW, W, and SW. Shock waves rattled buildings within a 20-km radius, particularly in areas on the S flank. Incandescent material ejected 100-350 m high caused avalanches of blocks in the Ceniza (SSW), Seca (W), Trinidad (S), Taniluye (SW), Las Lajas, and Honda drainages; avalanches sometimes reached vegetated areas. Ashfall was reported in several areas downwind including Morelia (9 km SW), Panimache I and II (8 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), and Sangre de Cristo (8 km WSW). INSIVUMEH reported that on July 25th that moderate explosions continued at a rate of 8-12 per hour, accompanied by plumes at 4,700 meters asl., Dispersing over a west / north- west sector over 15 km. During the night and in the morning, incandescent pulses were observed at 100-200 meters in height, as well as boulder avalanches in the barrancas Seca, Ceniza, Trinidad, Las Lajas and Honda, some of which reach the vegetation zone . Ash particles were reported on Panimache, Morelia, Santa Sofia, el Porvenir, Palo verde and San Pedro Yepocapa.As of the 21st of July, INSIVUMEH reported that weak to moderate explosions occurred at a rate of 8-11 per hour, accompanied by plumes of gray ash reaching 4,500-4,700 meters asl. Incandescent projections were observed 100-200 meters above the crater, which generate weak to strong fallout, and avalanches in the direction of the Seca, Tanilyua, Ceniza, lajas and Honda barrancas, with blocks reaching the level of vegetation. The shock waves are perceived at 20 km from the volcanic perimeter, with vibrations of the roofs and windows. Ash falls were reported in the villages to the south, Panimache I, Morelia, Santa Sofia, Finca Palo Verde, Sangre de Cristo, Yepocapa. As of the 13th of July, INSIVUMEH reported that explosions still occurs at the rate of 6-9 per hour, accompanied by columns of gas and ash at 4400-4700 meters asl. dispersing west. Ash falls were reported in the areas of Panimache II, Sangre de Cristo, Finca Palo Verde and El Porvenir. Night glow was reported, 150 to 300 meters high, accompanied by avalanches of boulders towards the Trinidad, Tanilyua, Ceniza honda, Las Lajas and Seca barrancas; some blocks roll to the limits of vegetation. INSIVUMEH reported that around 2:30 p.m. on June 24, a moderate lahar descended the El Jute and Las Lajas barrancas, on its western flank and tributaries of the Achiguate and Guacalate rivers respectively. From 3.30 p.m. local time, a lahar was observed in the Secanca barranca, a tributary of the Rio Pantaleon. As of the 19th of June INSIVUMEH reported that a slight white degassing rose at a height of 4,200 m above sea level, and 7 to 9 light and moderate explosions per hour which expel columns of gray ash at a height of 4,300 to 4,700 m. asl., which dispersed in a west and southwest direction, and which were accompanied by incandescent pulses between 200 and 300 meters above the crater, as well as weak and moderate avalanches in the direction of the canyons of Santa Teresa , Ceniza and Las Lajas, some extending to the edge of the vegetation. A low and moderate rumbling was perceived, causing shock waves causing vibrations in the houses of the villages near the volcano on its southern flank. Sounds similar to train locomotives are heard for periods of 2 to 5 minutes. INSIVUMEH reported that there were 4-13 explosions per hour recorded at Fuego during 10-16 June, generating ash plumes as high as 1.1 km above the crater rim that generally drifted 10-15 km NW, W, SW, and S. Ashfall was reported in several areas downwind including Santa Sofia (12 km SW), Morelia (9 km SW), Panimaché I and II (8 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), and El Porvenir (8 km ENE). Shock waves from explosions sometimes rattled houses in the vicinity of the volcano. Incandescent material was ejected 100-300 m high and caused avalanches of blocks in the Ceniza, Seca (W), Trinidad (S), Taniluyá (SW), Santa Teresa (W), Las Lajas, and Honda drainages. A new lava flow traveled 250 m down the Seca drainage on the NW flank in the early hours of 12 June. The lava effusion was accompanied by almost constant summit crater incandescence and gas emissions. Incandescent material was ejected 100 m above the summit. Avalanches of material descended the flanks and reached vegetated areas. Ash plumes rose over 1 km and shock waves from explosions were felt. The lava flow had lengthened to 300 m by 13 June, but was an estimated 250 m long on 14 June. Effusive activity can intensify and even extend to another ravine, presenting block avalanches; it is recommended not to stay near or in the barrancas. A notice of possible dispersion of ash up to 20 km in a south and southwest sector has been issued to civil aeronautics. As of the 8th of June, INSIVUMEH reported that a weak white fumarole rose a height of 4,100 meters with weak and moderate explosions, between 7 to 10 per hour, accompanied by columns of gray ash, at a height of 4,300 to 4,600 meters, dispersed in a north and northeast direction. Weak incandescent pulses were observed at the crater, as are weak and moderate block avalanches, towards the Trinidad, Taniluyá, Ceniza, Las Lajas, Honda and Seca barrancas. The explosions generated low rumblings with shock waves, vibrant roofs and windows in the homes of villages near the volcano. Sounds similar to locomotives are heard for periods of 1 to 3 minutes. As of the 28th of May 2020 INSIVUMEH reported that moderate to strong Strombolian explosions occurred at the rate of 8-12 per hour which raise columns of ash at 4,500-4,700 meters asl., dispersing south and southwest. Moderate avalanches occurred in the Seca, Tanilyua, Ceniza, Trinidad and Las Lajas barrancas. Fine ashes fall on the volcano observatory. Lahar has been also reported reported in the Barra Seca, a tributary of the Pantaleon river, located on the southwest flank of the volcano at 1 p.m. A weak to moderate lahar flowed in the Ceniza barranca tributary of the Achiguate river, from 4:20 p.m. Maintaining heavy rains can result in more lahars, carrying tree branches and volcanic material. INSIVUMEH reported that there were 5-12 explosions per hour recorded during 22-26 May, generating ash plumes as high as 1.1 km above the crater rim that generally drifted 10-15 km in multiple directions. Shock waves rattled buildings within a 20-km radius, particularly in areas on the S flank. Incandescent material was ejected 100-300 m high and caused avalanches of blocks in the Ceniza, Seca (W), Trinidad (S), Las Lajas, and Honda drainages. Ashfall was reported in several areas downwind including Santa Sofia (12 km SW), Morelia (9 km SW), Panimache I and II (8 km SW), Ciudad Vieja (13.5 km NE), San Miguel Dueñas (10 km NE), and Antigua Guatemala (18 km NE). Lava flows in the Ceniza drainage varied in length between 150 and 400 m long. As of the 24th of May, lava flow a hundred meters long towards the Seca barranca was observed in the images of Sentinel-2, as well as avalanches of blocks reaching up to 280 meters in length. The rains on the upper parts of the drainage generate weak to moderate lahars, marked by volcanic material, blocks of 1-2 meters in diameter, and trees. INSIVUMEH reported a lahar on May 25 at 8:15 p.m. local in Barranca Seca, and Rio Pantaleon. INSIVUMEH reported that a change in the type of activity was recorded by the seismic and acoustic networks from May 5, 2020 . On the evening of May 8 a lava flow has been observed since the morning, in the direction of Barranca Ceniza reaching a length of about 400 meters. It was accompanied by almost constant incandescence at the crater and avalanches towards the vegetation zone over 1 km. The explosions remained weak to moderate, with shock waves and ash plumes reaching 4,800 m. asl. There were 5-12 explosions per hour recorded during 22-28 April, generating ash plumes as high as 1.1 km above the crater rim that generally drifted 10-15 km W and SW. Ashfall was reported in several areas downwind including Santa Sofia (12 km SW), Morelia (9 km SW), Panimache I and II (8 km SW), and Sangre de Cristo (8 km WSW). The two lava flows continued to be active during 25-28 April; the flow in the Ceniza drainage did not advance past 200 m and the flow in the Seca drainage had extended to 800 m long. The ends of the lava flows continued to generate blocks that reached vegetated areas. INSIVUMEH reported that lava began to descend Fuego's Ceniza (SSW) drainage on 19 April. The rate of effusion increased in the evening of 23 April and observatory staff saw a second lava flow in the Seca (W) drainage that was 170 m long. On 24 April satellite data confirmed thermal anomalies from both lava flows. The main part of the lava flow in the Ceniza was 200 m long, but prodced incandescent blocks from the end of the flow traveled an additional 240 m, reaching vegetated areas. Incandescent blocks from the end of the flow in the Seca drainage traveled 520 m. Explosions at the summit crater generated shock waves and ash plumes that rose almost 1.2 km above the crater. Avalanches of blocks from these explosions traveled up to 1 km down all flanks. INSIVUMEH reported that the night of April 18 the seismic and acoustic network of Fuego recorded a change in the type of activity. bad meteorological conditions no permitted observation of the lava flow, but analysis of satellite images helped to obtain its characteristics. The flow to Barranca Ceniza on April 19 was approximately 320 meters long. The activity was accompanied by almost constant incandescence at the crater and avalanches over 1 km, reaching the level of vegetation. There were 5-14 explosions per hour recorded during 7-14 April, generating ash plumes that rose as high as 1.1 km above the crater rim and generally drifted 10-20 km in multiple directions. Minor ashfall was reported in several areas downwind including Santa Sofia (12 km SW), Morelia (9 km SW), Panimache I and II (8 km SW), Quisache, and Sangre de Cristo (8 km WSW). Explosions sometimes produced shock waves that rattled houses in communities within a 25-km radius. Incandescent material was ejected 100-600 m high. Lava flows in the Ceniza drainage had variable lengths during the week, from 200 to 600 m long. Avalanches of blocks from the lava flows traveled sometimes long distances, and in some cases set fire to vegetated areas. INSIVUMEH reported that on April 12th, 4 strong explosions occurred with expulsion of incandescent materials on the flanks of the volcano, respectively at 2:42, 2:56, 3:55 and 4:12 Yhis day, the sector was cloudy and the atmosphere is warm, and moderate fallout; a lava flow of 200 meters wide followed the barranca Ceniza. INSIVUMEH reported that on April 8th weak to moderate explosions, 10 to 14 per hour, accompanied by gray plumes at 4,500-4,800 meters asl. scattered west and southwest, as well as incandescent pulses 300-400 meters high and avalanches in the vicinity of the crater, and the various drainages.A change in Fuego's activity since April 6 is reported by the Government in a special bulletin on April 8 at 9 p.m. local, following the change in seismicity: the activity has now become effusive, and forms a flow of lava 400 meters long towards the Ceniza barranca. There is an almost constant glow at the crater and avalanches up to 1 km. reaching the vegetation. The current activity is similar to that recorded from March 16, 2020, which lasted 8 daysThere were 4-12 explosions per hour recorded at Fuego during 17-24 March, generating ash plumes that rose as high as 1.1 km above the crater rim and generally drifted 10-22 km S, SW, and W. Almost daily ashfall was reported in several areas downwind including Santa Sofia (12 km SW), Morelia (9 km SW), Panimache I and II (8 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), El Porvenir (8 km ENE), and La Cruz. Explosions sometimes produced shock waves that rattled nearby houses and were felt in communities within a 25-km radius. Incandescent material was ejected 100-400 m high and caused avalanches of material that occasionally traveled long distances (reaching vegetated areas) down the Seca (W), Taniluya (SW), Ceniza, Trinidad, Honda, and Las Lajas ravines. Lava flows of variable lengths (400-1,000 m) descended the Trinidad and Ceniza ravines each day but were inactive by the evening of 23 March. INSIVUMEH reported that a new change occurred in eruptive behavior on March 15 from 19:24, with an increase in degassing accompanying the lava flow, well observable at night on about 600 meters long in the Trinanca barranca. An increase in avalanches was reported in Las Lajas, Trinidad and Cenizas barrancas.Effusive activity was accompanied by weak explosions.The seismic activity presented a continuous signal of low amplitude in relation to the expulsion of the materials feeding the lava flow and its degassing. As of the 26th of february INSIVUMEH recorded 5 to 12 moderate explosions of Strombolian type per hour which generated a plume of gray ash which reached approx. 4,500 m-4,700 m asl and derivative W and SW. In addition, a white plume that reached 4,300 m asl and drifted west and southwest is observed.The incandescent material is ejected at an approximate height of 100 m to 200 m above the crater with moderate avalanches around the crater, mainly in the Seca, Taniluya, Ceniza, Santa Teresa, Trinidad, Las Lajas barrancas, with slight fallout.A lava flow 300 meters long is described in the Ceniza barranca, with moderate to strong avalanches from the flow front.Ash falls have been reported in several leeward areas, including Santa Sofía, Morelia , Panimaché I and II , Finca Palo Verde, San Pedro Yepocapa , Sangre de Cristo and El Porvenir .INSIVUMEH reported that there were 8-16 explosions per hour recorded at Fuego during 12-18 February, generating ash plumes that rose as high as 1.1 km above the crater rim and generally drifted 10-22 km SW and W. Ashfall was reported in several areas downwind including Santa Sofía (12 km SW), Morelia (9 km SW), Panimaché I and II (8 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), El Porvenir (8 km ENE), Alotenángo (8 km ENE), and La Soledad (11 km N). Explosions sometimes produced shock waves that rattled houses in communities within an 8-km radius. Incandescent material was ejected 150-500 m high and caused avalanches of material that occasionally traveled long distances (reaching vegetated areas) down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), Honda, and Las Lajas (SE) ravines lava flows in the Ceniza drainage were 700-800 m long during 13-17 February and lengthened to 1.2 km during 17-18 February. INSIVUMEH reported that on February 5th explosive activity continued at the rate of 5 to 8 episodes per hour, accompanied by ash plumes reaching an altitude of 4,900 meters (flight alt. 160 / VAAC Washington). The ashes move towards the northeast for about twenty kilometers, with fallout on Alotenango, Ciudad Vieja and Antigua Guatemala. Night glow is linked to impulses 200 meters high and avalanches of boulders in the barrancas. INSIVUMEH reported that there were 8-17 explosions per hour recorded at Fuego during 14-21 January, generating ash plumes that rose as high as 1.1 km above the crater rim and generally drifted 10-22 km SW and W. Ashfall was reported in several areas downwind including Santa Sofia (12 km SW), Morelia (9 km SW), Panimache I and II (8 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), and El Porvenir (8 km ENE). Explosions sometimes produced shock waves that rattled houses in communities within a 7 km radius, though they were felt up to 25 km away during 19-20 January. Incandescent material was ejected 100-500 m high and caused avalanches of material that occasionally traveled long distances (reaching vegetated areas) down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), Honda, and Las Lajas (SE) ravines. Ash plumes drifted 18 km E during 20-21 January. INSIVUMEH reported that low to moderate ash emissions continued at the rate of 11-17 episodes per hour, accompanied by plumes between 4,500 and 4,800 meters asl. moving west and southwest. Night glow was observed at 200-300 m. above the crater; this activity generating weak to moderate avalanches around the crater, and some stronger towards the drainage. Ash falls were reported on Morelia, Santa Sofia, Sangre de cristo, San Pedre Yepocapa, and Panimache. Previous news 2019 - As of the 27th of December, INSIVUMEH reported that activity remained at the same level the last days with 15-18 explosions per hour, weak to moderate, which were accompanied by ash plumes at 4,200-4,500 meters asl., and avalanches in direction of the different barrancas. Nighttime incandescent impulses were observed at 100-200 meters in height and a lava flow in the barranca Seca reached a length of 300 meters. On the other hand following a change of direction of the winds blowing from the southwest, the ash plumes dispersed on December 27 in the morning towards the northeast and the north, with the probability of falls in the areas of Acatenango, Ciudad Vieja and Antigua Guatemala. INSIVUMEH reported that the effusive activity increased; night and early morning glow were visible and according MIROVA moderate thermal anomalies could be observed, included in recent days between 18 and 91 MW.The active lava flow in the direction of the Ceniza barranca was about 600 meters, with avalanches and steam at the head of the lava front. INSIVUMEH reported that there were 6-15 explosions per hour recorded at Fuego during 20-26 November, generating ash plumes that rose as high as 1.1 km above the crater rim and drifted 10-20 km S, SW, and W. Ashfall was reported in several areas downwind including Santa Sofia (12 km SW), Morelia (9 km SW), Panimaché I and II (8 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), Sangre de Cristo (8 km WSW), and El Porvenir (8 km ENE). Explosions sometimes produced shock waves that rattled houses in nearby communities. Incandescent material was ejected 100-450 m high and caused avalanches of material that occasionally traveled long distances (reaching vegetated areas) down the Seca (W), Taniluya (SW), Ceniza (SSW), Trinidad (S), Las Lajas (SE), and Honda ravines. Lava flows advanced in the Seca and Santa Teresa (W) drainages during November, and were 300 and 800 m long on 21 and 24 November, respectively. INSIVUMEH following important rain on of the volcano, a weak to moderate lahar was reported on November 17th of November in the Ceniza gorge consisting of ashes and blocks deposited by constant activity, and remobilized. INSIVUMEH reported that since November 6 a lava flow towards the barranca Seca, long on November 13 of about 900 meters. This activity was effusive, according to the OVFGO, despite a notable incandescence in night and hours of low light, as well as a sustained degassing. This activity, similar to that recorded in April, could be prolonged in the following months. Discrete emissions of ash and gas continue, with a plume at 4,700 m. asl., moving west and southwest for 20 km. INSIVUMEH reported that there were 10-18 explosions per hour recorded at Fuego during 2-8 October, generating ash plumes that rose as high as 1.1 km above the crater rim and drifted 10-25 km S, SW, W, and NW. Ashfall was reported in several areas downwind including Santa Sofia (12 km SW), Morelia (9 km SW), Panimache I and II (8 km SW), Finca Palo Verde, San Pedro Yepocapa (8 km NW), and El Porvenir (8 km ENE). Explosions sometimes produced shock waves that rattled houses in nearby communities. Incandescent material was ejected 200-400 m high and caused avalanches of material that occasionally traveled long distances (reaching vegetated areas) down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), El Jute (SE), Las Lajas (SE), and Honda ravines. Lava flows traveled 200 m down the Seca drainage on 6 October and were active in the Santa Teresa (W) drainage on 8 October. Lahars descended the Ceniza, El Mineral, and Seca drainages during 3-7 October, carrying tree branches, trunks, and blocks 1-3 m in diameter. As of the 5th of October, INSIVUMEH reported that constant rains over the past few days are likely to cause floods, lahars and landslides. Especially in the area of ​​the Fuego volcano, weak to moderate lahars were reported in different drainages: the Ceniza, Las Lajas, Seca and Rio Mineral barrancas are involved. These lahars were characterized by the transport of ash, blocks 1 to 2 meters in diameter and generate steam columns and shock waves. Previously, INSIVUMEH reported that at night and early June 22 in the morning, incandescence was observed at a height of approximately 350 meters above the crater, causing weak to moderate avalanches in the crater contour, some over long distances to vegetation in the direction of the crater. Seca, Taniluyá, Ceniza, Trinidad, El Jute, Las Lajas and Honda. Ash fallout is reported from Morelia, Santa Sofia, El Porvenir, Palo Verde, San Pedro Yepocapa, Panimache I and II. INSIVUMEH reported that there were 10-20 explosions per hour recorded at Fuego during 15-18 June, generating ash plumes that rose as high as 1.1 km above the crater rim and drifted 10-25 km W, SW, and E. Explosions sometimes produced shock waves that rattled houses in nearby communities. Incandescent material was ejected 200-400 m high and caused avalanches of material that occasionally traveled long distances (reaching vegetated areas) down Seca (W), Taniluya¡ (SW), Ceniza (SSW), Trinidad (S), El Jute (SE), Las Lajas (SE), and Honda ravines. Ashfall was reported in several areas downwind including Santa Sofi­a (12 km SW), Morelia (9 km SW), Panimaché I and II (8 km SW), Sangre de Cristo (8 km WSW), and El Porvenir (8 km ENE). Previous month, INSIVUMEH reported that there were 15-20 explosions per hour recorded at Fuego during 16-17 and 19-20 May, generating ash plumes that rose as high as 1.1 km above the crater rim and drifted 10-25 km S, SW, and W. Explosions sometimes produced shock waves that rattled houses in nearby communities. Incandescent material was ejected 300-400 m high and caused avalanches of material that occasionally traveled long distances (reaching vegetated areas) down Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), and Las Lajas (SE) ravines. Ashfall was reported in areas downwind including Santa Sofía (12 km SW), Morelia (9 km SW), Panimaché I and II (8 km SW), and El Porvenir (8 km ENE). A lava flow on the W flank was 300 m long. On 16 May lahars carrying variously-sized blocks and tree branches and trunks descended the Las Lajas ravine. On 20 May hot lahars with a sulfur odor descended the Ceniza, El Jute, and Las Lajas drainages, carrying blocks 1-3 m in diameter. INSIVUMEH reported that there were 13-24 explosions per hour recorded at Fuego during 9-10 and 12-14 May, generating ash plumes that rose as high as 1.1 km above the crater rim and drifted 10-15 km S and SW. Explosions sometimes produced shock waves that rattled houses in areas to the S and SW. Incandescent material was ejected 200-300 m high and caused avalanches of material that occasionally traveled long distances (and reached vegetated areas) down the Seca (W), Taniluyá (SW), Ceniza (SSW), Trinidad (S), and Las Lajas (SE) ravines. Ashfall was reported in areas downwind including Santa Sofía (12 km SW), Morelia (9 km SW), Panimaché (8 km SW), El Porvenir (8 km ENE), and Sangre de Cristo (8 km WSW).Lava flows were 500-600 m long on the W flank. On 11 May steaming lahars descended the Las Lajas, Seca, Ceniza, and Mineral drainages, carrying variously-sized blocks and tree parts. Lahars on 14 May carried blocks and tree trunks down the Ceniza drainage. INSIVUMEH reported that on 18 April steaming hot lahars descended Fuego's Ceniza (SSW) and Taniluya (SW) drainages, carrying variously-sized material including blocks up to 2 m in diameter. The lahars were 1 m deep, 15 m wide, and had a sulfur odor. During 20-23 April there were 17-22 explosions per hour, generating ash plumes that rose almost as high as 1.1 km and drifted 15-20 km S, SW, and W. Shock waves vibrated local structures. Incandescent material was ejected 300-450 m high and caused avalanches of material that occasionally traveled long distances down Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, and Honda ravines. A lava flow, 600 m long, advanced in the Seca drainage. Ashfall was reported in reported in Yepocapa (8 km N), Morelia (9 km SW), Santa Sofia (12 km SW), Sangre de Cristo (8 km WSW), and Panimache (8 km SW). INSIVUMEH reported that on April 11 between 18 and 22 low to moderate explosions occurred every hour, with ash plumes as high as 4,800 meters asl, before dispersing to the east. During the night, incandescent impulses rose 300 meters above the crater, causing weak to moderate avalanches to the barrancas.A lava flow extends for 500 meters, from the crater to the direction of Barranca Seca. A low ashfall is reported on Alotenango, Ciudad Vieja, and La Reunión; according to the direction of the wind, the ashes could fall back on Antigua Guatemala.Persistent heavy rains on the Fuego volcano in Guatemala resulted in lahars in various drainages on April 11th: the Taniluya, Ceniza and El Jute barrancas were impacted, and thousands of people from surrounding communities were blocked. Previously, a special bulletin from INSIVUMEH was issued on 31 March describing another increase in activity with the number of explosions ranging from 14 to 32 per hour. Ash plumes rose as high as 1.3 km and drifted W, SW, and S. The explosions vibrated local residences. A lava flow that had emerged in the early morning hours advanced 800 m in the Seca drainage. On 1 April there were 13-16 explosions recorded per hour. Ash plumes rose almost 1 km and drifted 10-15 km S, SE, and SW. Shock waves continued to vibrate residential structures. Incandescent material was ejected 100-200 m high and caused avalanches of material that occasionally traveled long distances down Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, and Honda ravines, reaching vegetation. Ashfall as reported in areas downwind including Panimache I, Morelia, Palo Verde Estate, Santa Sofia, La Rochela, and San Andres Osuna. INSIVUMEH reported that on 29th of March, the eruptive activity was characterized by constant periods of increase in its eruptive behavior, with 20 hourly explosions, and plumes of ash reaching 5,000 meters asl. before moving for 15 to 30 km. These explosions generate avalanches in the Seca, Las Lajas and Honda barrancas, which remobilize materials; at night, they were incandescent and visible over 350 meters from the crater. The respect of the instructions is recalled in view of possible new eruptions, accompanied by pyroclastic flows. As of the 22nd in the morning, INSIVUMEH reported an increasing activity of the volcano; between 15 and 20 moderate and strong explosions occurs every hour, columns of ash and degassing rising up to 5 thousand meters above sea level, dispersing at 30 kilometers south, west, south-west, east and southeast, generating moderate and strong crater avalanches that take the direction of Seca, Taniluya, Ceniza, Trinidad, Las Lajas and Honda. Ash falls were reported on La Rochela, Ceylon, Osuna, Las Palmas, Siquinalá and Santa Lucía Cotzumalguapa; other communities could be affected up to 30 km from the volcano. INSIVUMEH reported that explosive activity was still contnuing during recent days, with 13 to 16 weak to moderate explosions accompanied by ash plumes at 4.400-4.700 meters asl, scattering over a wide area according to the winds.Incandescence was observed at 200 -300 meters in height, as well as avalanches in the contours of the crater and the barrancas.Ash falls occurred in El Rodeo, El Zapote, Celan, La Rochela, Panimache, Morelia, Santa Sofia, and Sangre de Cristo. INSIVUMEH reported that on the 1st of February, nocturnal glow was observed, and the rhythm of the explosions was13 to 18 per hour at the beginning of the day, with plumes of ashes reaching 4,800 m. asl. The ashfall occurred toward the Northeast on Alotenango, Antigua Guatemala, Ciudad Vieja, and the capital Ciudad Guatemala. Avalanches were observed in the barrancas Seca, Tanilyua, Ceniza, Trinidad and Las Lajas. INSIVUMEH reported that 10-18 explosions per hour were detected at Fuego during 29-31 January. Ash plumes from the explosions rose as high as 1.1 km above the crater rim and drifted E and NE. Ashfall was reported in areas downwind including Alotenango, Antigua Guatemala (18 km NE), and Guatemala City (70 km E). Incandescent material was ejected 300 m high and caused avalanches of material that traveled down Seca (W), Ceniza (SSW), Trinidad (S), and Las Lajas (SE) ravines. During 31January-1 February there were 14-16 explosions recorded per hour, with ash plumes rising as high as 1.1 km and drifting 20-25 km S and SE. Ash fell in the communities of El Rodeo (10 km SSE), El Zapote, Ceilan, and La Rochela. Incandescent material rose 200-400 m high causing avalanches of material to descend the Seca, Taniluyá (SW), Ceniza, Trinidad, Las Lajas, and Honda (E) ravines. Shock wave causing vibration in the communities near the volcano.INSIVUMEH reported that on January 22, the activity was maintained with 15 -25 low to high explosions, per hour, a plume of ash amounting to 4,800 m asl. before dispersing to the west and south-west, and incandescent impulses 100-300 meters above the crater.Ash falls are reported on Panimaché I y II, Morelia, Santa Sofía, Yepocapa. As of the December 5th, few explosions occurred accompanied by plumes of gray ash at a height of 4,500-5,000 meters asl. dispersing to the west and southwest over 25 km. Incandescent impulses are reported at a height of 150-200 meters above the crater, generating fallout in the vicinity of the crater and to the main barrancas. INSIVUMEH repored that heavy rains during 28 and 29 November generated hot lahars, accompanied by the smell of sulfur and degassing columns, towards the Seca, Santa Teresa and El Mineral barrancas. The lahars carried ash and blocks 1 to 3 meters in diameter, volcanic materials deposited during the last eruptions.INSIVUMEH reported that moderate to strong explosions continued at a rate of 12 to 15 per hour, this vulcanian-type activity is accompanied by eruptive columns with ashes rising to 5,000 meters asl. and shock waves and vibrations felt within a radius of 25 km. A change of wind direction, November 26 in the morning from south to north, produced ashfalls on Alotenango, San Miguel, Dueñas, Antigua Guatemala and Ciudad Guatemala. During 24-25 November there were 12-15 weak-to-moderate explosions per hour, generating ash plumes that rose as high as 1.1 km and drifted 20-25 km W and SW. Shock waves continued to vibrate local structures, and ashfall was again reported in Panimache, El Porvenir, Morelia, Santa Sofia, Sangre de Cristo, Palo Verde Estate, and San Pedro Yepocapa. Moderate-to-strong Vulcanian explosions on 26 November generated ash plumes that rose as high as 1.2 km and drifted N. The explosions were heard, and shock waves felt, mostly within 25 km, though some explosions were audible to residents of Guatemala City (city center is about 40 km ENE). Explosions continued the next day at a rate of 10-15 per hour. Ash plumes rose as high as 1.3 km and drifted 20-25 km W and SW. Incandescent material was ejected 200 m high, and avalanches of material descended multiple drainages. Ashfall was reported in areas downwind. As of the 22nd of November, INSIVUMEH reported that explosions accompanied by expulsions of a dark gray plume continued.The avalanches of blocks and ashes, accumulated during the eruption of November 18, continued in the Seca, Ceniza, El Jute, Las Lajas. INSIVUMEH reported that the strong eruption of the Fuego was accompanied on November 19 in the morning by constant explosions, and a sustained ash plume rising to about 7,000 meters asl, before dispersing 50-60 km to the west and southwest.The incandescent source was observed 800-1000 meters above the crater, with ballistic materials scattered for more than one kilometer around the volcano.The main lava flow reached about 3,000 meters in length towards the barranca Ceniza ; two other shorter flows, of about 300 meters, were observed in the direction of Las Lajas and Honda barrancas. The flows was accompanied by avalanches and mobilization of ashes.Pyroclastic flows descended from the Seca, Las Lajas and Honda barrancas. Abundant falls of ash and particles are falling on Panimache, Santa Sofia, Sangre de Cristo, Finca Paolo Verde, San Pedro Yepocapa, San Juan Alotenango, and Antigua Guatemala.The Conred also reported light ash falls on Mazatenango, San Bernardino, San Antonio, San Miguel Panán, Chicacao, San Juan Bautista, Santa Bárbara Río Bravo and Patulul, and that 2,052 people were safe and 3,000 have been evacuated; 76,145 people would be affected. At about 11h40 AM slight decrease in seismicity was observed, as well as a decrease in the height and extension of the ash plume: height of 6,000 meters asl dispersing over 20-30 km. In the evening (6PM) the seismogram and the RSAM showed a drop in activity, and according to the observatory this 5th eruptive phase of the year was over, after a duration of 32 hours. However, Explosions were always recorded, weak to moderate, accompanied by a plume of ash at 4,800 meters asl, drifting to a west and southwest sector over 15 km.The incandescent impulses were reduced to 100-300 meters, generating weak avalanches mainly in the crater contour; some ejections reach the limit of vegetation towards the main barrancas. A special INSIVUMEH bulletin of 18 November reported that at 10.10 local, the fifth eruption 2018 started. It was characterized by a permanent ash plume at 4,900 meters asl, dispersing to the south for 15-25 km, and generating moderate to strong avalanches in the Ceniza and Tanilyua Barrancas, up to the vegetative limit. The incandescent fountain was observed up to 300 meters high above the crater. A lava flow, 2,000 meters long, in the direction of the barranca Ceniza, has a front generating avalanches and ash rising. A possibility exists of the beginning of lava flow in the Taniluya barranca in the next hours, and of pyroclastic flows.Ash falls have been reported on Panimache, Morelia, Santa Sofia, Sangre de Cristo, and Finca Paolo Verde.During the night, the explosions generated a plume rising to 5.200 meters in height before dispersing 20-30 km in a westerly and north-easterly direction; the incandescent fountains rose up to 500-600 meters above the crater and the ballistic ejections reached 800 meters in various directions. The lava flow towards the Ceniza gorge reaches a length of 2,500 meters.At the time of the 0h40 report, a pyroclastic flow descended in the direction of the Seca barranca. Comred declared the red alert and activated the Emergency Operations Center-COE-Municipal to coordinate the response actions. National Highway 14 is closed. Self-evacuation is in progress. Previously, INSIVUMEH reported that on 18th of November, the activity increased again rising: 8 to 14 explosions, low to moderate, per hour are accompanied by emission of plumes of ash to 4,700 meters asl., drifting on 15-20 km to the southwest and west. Incandescent pulsatile emissions at 150-200 meters are observed, as well as moderate avalanches in the crater contour. A lava flow reaches a length of 1,300 meters in the Ceniza barranca, permanently fed.Ash falls are reported on Panimache I, Morelia, Santa Sofia, Sangre de Cristo, Finca Palo Verde.INSIVUMEH reported that 7-18 explosions per hour were detected at Fuego during 8-12 November. Ash plumes from the explosions rose as high as 1.1 km above the crater rim and drifted 8-20 km W and SW. Ash fell in areas downwind including Morelia (9 km SW), Santa Sofia (12 km SW), Sangre de Cristo (8 km WSW), Panimaché (8 km SW), El Porveni, Finca Palo Verde, and San Pedro Yepocapa (8 km NW). Incandescent material was ejected 150-300 m high and caused avalanches that traveled far, reaching vegetated areas in multiple drainages. Lava flows as long as 1.2 km advanced in the Ceniza (SSW) drainage, though lava-flow activity greatly decreased by 12 November. As of the 9th of November, INSIVUMEH reported that the effusive activity continued; the lava flow in the Ceniza barranca reached a length of 1 200 meters. Avalanches were reported in the direction of Las Lajas and Honda barrancas.Low to moderate explosions occurred ranged from 12 to 18 per hour, with ash plumes rising to 4,600-4,700 meters asl, before dispersing over 10-15 km. towards a western sector, accompaznied with fallout of fine particles on this zone, including Sangre de Cristo, Santa Sofia, Panimaché I and II, Finca Palo Verde, El Porvenir. The explosions were accompanied by outgassing noises for 2 to 5 minutes.INSIVUMEH reported that a new eruptive phase began on November 6 in Fuego, the fourth in 2018.Low-to-moderate steady-state explosions are recorded, accompanied by ash plumes at 4,800 m. asl.,then drifting 20 km westerly and southwesterly, and with shock waves and sounds.Ash falls are reported on Panimaché, El Porvenir, Morelia, Santa Sofia, Sangre de Cristo, Finac Palo Verde, and San Pedro Yepocapa. Incandescences impulses are visible in the crater that rose to about 200-300 meters high, generating avalanches around the crater, impacting the vegetation towards the Seca and Taniluya barrancas, and feeding a 1000 meter long flow, then reaches 1,200 meters in the Ceniza gorge.The effusive activity then continued until the evening, weakening very slightly. As of the 5th of November, INSIVUMEH reported that activity of Fuego increased, with 10 to 15 hourly explosions, which are accompanied by ash plumes at 4,700 meters asl. dispersing 15 km in a westerly and southwesterly direction. Nighttime glow is observed to 200-300 meters above the crater; the explosions generate weak to moderate avalanches, and lava flows 600 meters long towards the Tanilyua and Ceniza barrancas.The ash falls concern Panimaché, El, Porvenir, Morelia, Santa Sofia, Sangre de Cristo, Finca Palo Verde and San Pedro Yepocapa.t INSIVUMEH and CONRED reported that on 20 October hot lahars descended Fuego's Las Lajas (SE) and Mineral drainages, carrying blocks up to 2 m in diameter along with branches and tree trunks. The lahars were 20-30 m wide and 2 m deep. During 20-23 October there were 8-15 weak explosions recorded per hour, producing gray ash plumes that rose 750-850 m above the crater rim and drifted 12 km W and SW. Ashfall was reported in areas downwind, including Morelia (9 km SW), Santa Sofia (12 km SW), Sangre de Cristo (8 km WSW), Finca Palo Verde, Panimaché (8 km SW), and San Pedro Yepocapa (8 km NW). Lava fountains rose 100-200 m high. Avalanches of blocks descended the El Jute (SE), Ceniza (SSW), and Las Lajas (SE) drainages, with material reaching vegetated areas. INSIVUMEH reported that during 13-16 October explosions (8-18 per hour) produced ash plumes that rose almost 1 km and drifted 8-12 km S, SW, and W. Ashfall was reported in areas downwind including Sangre de Cristo (8 km WSW), Finca Palo Verde, and Panimache I and II (8 km SW). Incandescent material was ejected 150-200 m high, causing avalanches of material within the crater, though some of the avalanches traveled long distances, reaching vegetated areas. The lava flow on the W flank was still visible but by 14 October no longer active. On 13 October a steaming lahar descended the Ceniza (SSW) drainage, carrying blocks up to 2 m in diameter, and branches and tree trunks. INSIVUMEH reported that from 3.50 am on October 12, a new phase of the eruption began, effusive: fountains of 400 meters above the crater generated a lava flow that reaches 600 meters long towards the west drainages of the volcano. A possibility of pyroclastic flows is considered towards the seca, Las Lajas and Cenizas barrancas. On the evening of October 12, pyroclastic flows are reported in the Barranca Seca, where the lava flow reaches a length of 1,500 meters. Its advance causes a lifting of materials and some avalanches. A pyroclastic flow is also observed in the Barranca Santa Teresa. The eruptive dynamics is maintained with moderate explosions, which are accompanied by ash plumes at 5,000 meters asl, dispersing to the SW, O and SE over 15-20 km. ; incandescent impulses are observed 200-300 meters above the crater. The fallout of ashes concerns Panimache I, Morelia, Sangre de Cristo, El Porvenir, and Finca Palo Verde..INSIVUMEH reported that on October 11, a slight increase in the explosive activity of the Fuego was reported characterized by 10 to 14 hourly explosions, weak to moderate, accompanied by plumes of ash rising to 4,600 meters asl. traveling 15 km to the west and southwest. Incandescent impulses are observed 100-200 meters above the crater, generating the fall of volcanic materials and avalanches towards the Santa Teresa and Las Lajas barrancas. This activity is accompanied by moderate fallout, shock waves and constant outgassing noise.INSIVUMEH reported that on September 29 in the evening an increase of the explosive activity occurred ; tremor and degassing pulses lasting up to 3-4 hours were accompanied by aircraft turbine sounds and block avalanches on the southwestern flank. About Five to nine hourly explosions were accompanied by ash plumes at 4,400 - 4,700 meters.In the evening, 10 to 15 hourly explosions were recorded, weak to moderate, and accompanied by ash plumes at 4,500 meters asl. moving 10 km to the west and southwest, and fallout of volcanic materials that generate small avalanches.Ash falls are reported on San Pedro Yepocapa, Finca Palo Verde, Morelia, and Panimache.The summit is marked by a constant incandescence during the night.INSIVUMEH reported that during 20-21 and 24-25 September explosions at Fuego generated ash plumes that rose almost as high as 1 km above the crater and drifted 12 km W and SW. Incandescent material was ejected 150 m above the crater rim, and caused avalanches of material within the crater area. Ashfall was reported in areas downwind including Sangre de Cristo (8 km WSW), Finca Palo Verde, Panimache (8 km SW), and San Pedro Yepocapa (8 km NW). On 25 September hot, steaming lahars descended the El Jute (SE) and Las Lajas (SE) drainages, carrying blocks up to 2 m in diameter, and branches and tree trunks. INSIVUMEH reporterd that on 7 September at 7:31 local time, an avalanche occurred on one of the flanks of Fuego due to a fissure in the upper part of the Barranca Las Lajas, the destabilization of materials accumulated during the eruption of June 3, and preceded by a small ash emission from a vent located lower down the slope.During the last 24 hours about 5 to 12 low to moderate hourly explosions occurred , accompanied by ashes and gas reaching 4,700 meters above sea level, before moving west-southwest 15 km INSIVUMEH reported that heavy rain generated lahars during 29 August-1 September that descended Fuego's El Jute (SE), Las Lajas (SE), Cenizas (SSW), Taniluya (SW), Seca (W), Mineral, Honda, and Pantaleon (W) drainages. The lahars were hot, had a sulfur odor, and carried tree branches and blocks (2-3 m in diameter). On 1 September lahars disrupted roads between San Pedro Yepocapa (8 km NW) and Sangre de Cristo (8 km WSW), and from Finca Palo Verde and El Porvenir (8 km ENE). During 2-4 September explosions produced ash plumes that rose as high as 950 m above the crater rim and drifted 10-15 km W and SW. Avalanches of incandescent material were confined to the crater. Ashfall was reported in areas downwind including San Pedro Yepocapa, Sangre de Cristo, Panimache I and II (8 km SW), Morelia (9 km SW), and Finca Palo Verde. INSIVUMEH reported that during 18-21 August explosions at Fuego generated ash plumes that rose as high as 850 m above the crater and drifted 12 km NW, W, and SW. Incandescent material was ejected 150 m above the crater rim, and caused avalanches of material within the crater area and down drainages on the flanks. According to CONRED, as of 22 August, the number of people confirmed to have died due to the 3 June pyroclastic flows was 169, and 256 remained missing. On 17th of August, INSIVUMEH reported that volcanic activity remains moderate with 6 explosions, accompanied by ash plumes at a height of 4,100-4,200 meters asl, drifting to the northwest and west; low avalanches are reported towards the Cenizas barranca.The heavy rains remobilized the ashes and caused a lahar in the barranca Honda. INSIVUMEH reported that on 9 August heavy rain triggered lahars that traveled down the Seca drainage on Fuego's W flank and the Mineral drainage, carrying tree trunks and blocks as large a 2 m in diameter. During 12-14 August weak-to-moderate explosions generated ash plumes that rose almost as high as 1 km above the summit and drifted W and SW. Incandescent material was ejected 150 m high, and avalanches of blocks descended the Cenizas (SSW), Las Lajas (SE), and Santa Teresa (W) SW), Panimaché I (8 km SW), and finca Palo Verde. INSIVUMEH rported that a strong explosion, accompanied by avalanches around the crater, fallout and shockwaves, occurred on August 8 at 21:20 local. Incandescent materials were ejected at 4,800 m Asl., Evening about 1,100 meters above the summit; the ash plume moved 12 km to the west. This is the first strong explosion recorded in the last six weeks.INSIVUMEH reported that during 29-30 July avalanches of material descended the Cenizas drainage on Fuego's SSW flank. Hot lahars generated by heavy rains on 30 July descended the Taniluyá (SW), Las Lajas (SE), El Jute (SE), and Cenizas drainages, carrying blocks 2-3 m in diameter and smelling of sulfur. INSIVUMEH and CONRED reported relatively quiet conditions at Fuego during 4-9 July characterized mainly by gas emissions and block avalanches on the flanks. During 7-8 July there was about one explosion detected every two hours, producing diffuse ash plumes that rose 500 m above the crater and drifted SW. Block avalanches descended the Seca (W), Cenizas (SSW), and Las Lajas (SE) drainages, while lahars were present in the El Jute (SE), Las Lajas, Cenizas, Taniluya (SW), Seca, Mineral, and Pantaleon (W) drainages. Seismicity increased on 10 July. Explosions generated ash plumes that rose 2.3 km and drifted 12 km SE, causing ashfall in Morelia (9 km SW) and Panimaché (8 km SW). According to CONRED, as of 4 July, the number of people confirmed to have died due to the 3 June pyroclastic flows was 113, and 332 remained missing. INSIVUMEH and CONRED reported that 2-7 weak explosions per hour at Fuego generated ash plumes that rose as high as 650 m above the crater rim and drifted W and SW during 27-29 June and 1-3 July. Ashfall was reported on 27 June in areas downwind including Sangre de Cristo and Yepocapa. Avalanches of material descended the S, SW, and W flanks (Santa Teresa, Las Lajas, El Jute, and Cenizas drainages). INSIVUMEH and CONRED reported that during 20-26 June multiple lahars at Fuego were often hot, steaming, and had a sulfur odor, and were generated from heavy rains and the recent accumulation of pyroclastic-flow deposits from the 3 June events. Lahars remained a significant hazard, and descended the Cenizas (SSW), Las Lajas (SE), Santa Teresa (W), and Taniluyá (SW) drainages. They were 25-45 m wide, as deep as 3 m, and often carried blocks up to 3 m in diameter, tree trunks, and branches. The agencies warned that because the Las Lajas drainage is full of deposits, lahars can continue to descend that drainage or create new channels in San Miguel Los Lotes (one of the hardest-hit areas). Explosions continued, producingash plumes that rose as high as 1.3 km above the crater and drifted as far as 15 km in multiple directions. Ashfall was reported in Panimache, Morelia, Sangre de Cristo, and finca Palo Verde on 22 June. Avalanches of material descended the SE, S, and W flanks (Santa Teresa, Las Lajas, and Cenizas drainages). According to CONRED, as of 26 June, the number of people confirmed to have died due to the 3 June pyroclastic flows was 113, and 197 more were missing. In addition, 12,823 remained evacuated. During 16-19 June as many as seven explosions per hour produced ash plumes that rose as high as 1.2 km above the crater and drifted as far as 15 km W, SW, and S. Some explosions were heard in areas within a 10-km radius. Avalanches of material descended the Santa Teresa, Las Lajas, and Cenizas drainages during 17-18 June, producing ash plumes, and ashfall in Panimache, Morelia, Sangre de Cristo, and finca Palo Verde. According to CONRED, as of 19 June, the number of people confirmed to have died due to the 3 June pyroclastic flows remained at 110, and 197 more were missing. In addition, 12,823 people had been evacuated. As of the 15th of June, INSIVUMEH reported that following heavy rains hot lahar traveled down in Santa Teresa Barranca and Rio Mineral, a tributary of Rio Pantaleon. Large of 20 to 25 meters and 2 meters high, and carrying fine and pasty materials, blocks of 3 meters in diameter and trunks. At 17:40, a lahar descended the river Ceniza. Other lahars were reported in Taniluya and Las Lajas barrancas, about 30 to 45 meters wide and 3 meters high As of the 13th of June INSIVUMEH reported that a lahar was observed traveling down in the Ceniza gorge; about 25 meters wide and 2 meters high, it carries fine and pasty materials, blocks one to three meters in diameter and tree trunks. Another lahar has taken the Las Lajas barranca, 30-40 meters wide and 3 meters high, characterized by the transport of similar materials.As of the 12th of June INSIVUMEH reported that at 7 am local an increasing of the explosive activity occurred, characterized by columns of ashes between 4,500 and 5,000 meters height asl., dispersed on 15 to 25 km to the northeast . Ashfall is likely to occur in Antigua Guatemala, Ciudad Vieja and San Miguel Duena. At 7:35 local time, the observatory reported a pyroclastic flow in the Seca barranca, producing a curtain of ashes that reached 6,000 meters asl before dispersing to the north and north-east. The explosive activity causes avalanches that produce thick columns of ash, which disperse along the same axis.These episodes are likely to impact the main drainages in next hours or days.In addition of the danger created by the pyroclastic flows, there are lahars due to the remobilization of the ashes following the heavy rains. On 11th of June at the end of the afternoon, hot lahars descended the barrancas Las Lajas and El Jute, made of fine and pasty materials, blocks of large diameter up to 3 meters, and trunks and branches; his measurements were 35 to 55 meters wide and 5 meters high. Other lahars have been reported in the Seca and Mineral barrancas, with the risk of overflowing rivers.As of the 8th of June,INSIVUMEH reported lahars in Santa Teresa, Mineral, Taniluyá and Ceniza barrancas, tributaries of the Pantaleón and Achiguate rios; these lahars are hot, emit fumes, and carry fine materials, and rocks 2-3 m in diameter, as well as tree trunks. In parallel, pyroclastic flows are reported in El Jute and Las Lajas drainages, accompanied by co-pyroclastic plumes up to 6,000 meters asl.The latest assessment given to 8 June / 8:30 by the Conred, is 109 dead, 197 missing, and 1,713,617 people affected by the climax and its aftermath. As of the 7th of June, at the beginning of the evening, new pyroclastic flows descended the Las Lajas and El jute drainages, accompanied by a co-pyroclastic cloud rising to 6,000 meters asl.CONRED reported that by 0630 on 6 June a total of 12,089 people had been evacuated, with 3,319 people dispersed in 13 shelters. One bridge and two power networks had been destroyed. According to news sources on 6 June, Guatemala's National Institute of Forensic Sciences stated that 75 people were confirmed to have died and 192 were still missing. Many, possibly thousands, received burns and other injuries. Weather conditions, continuing activity at Fuego, poor air quality, hot pyroclastic flow deposits, and rain made rescue efforts difficult. On Tuesday, an explosion forced relief to stop the research. The disaster has affected, to varying degrees, a total of 1.7 million Guatemalans.Details about volcanic event : the strong eruptive phase occurred at the volcano on Sunday 3rd of June). Lasting for about 16-17 hours until the evening, it generated ash clouds reaching up to 10 km, which drifted into westerly directions for more than 40 km, lava flows descending on the flanks, heavy ash fall in nearby areas and secondary mud flows triggered by strong rainfall. Massive pyroclastic flows - fast-moving turbulent avalanches of gas and hot rock material have claimed lives as well. Information from official side at least 69 victims have been confirmed. All fatalities occurred as result of being engulfed in pyroclastic surges, it seems mainly on the eastern flank.The eruption has abruptly decreased after 18:45 local time and returned to small to moderate intermittent explosions and minor rockfalls. Incandescence is visible at the crater, where fresh lava flows begin to cool. Civil protection has declared the highest alert level RED for the areas of Escuintla, Alotenango, Sacatepéquez, Yepocapa and Chimaltenango, while Escuintla is kept at the second highest, ORANGE. More than 3000 people are reported to have been evacuated and ash fall from the eruption has been affecting an area with a population of more than 1.5 million, roughly 10% of the country's population total. Previously, local news reported that a violent eruption occurred on the evening of Sunday, June 3 (local time), leaving at least 25 people dead and injured several other people after pyroclastic flow entered into Rodeo village. Volcanic ash has reportedly covered nearby villages, including San Pedro Yepocapa and Sangre de Cristo, ashfall has also been reported in Guatemala City. Some 100 people have been evacuated from affected areas. Guatemalan President Jimmy Morales has declared that a national emergency response has been mobilized. La Aurora International airport was closed on Sunday due to ashfall. Further eruptions, evacuations, and transportation disruptions are expected in the coming hours and days. INSIVUMEH reported that beginning at 1400 on 17 May a lahar descended the Seca (Santa Teresa) drainage on Fuego's W flank. The lahar was 25 m wide, 1 m deep, and carried trees and blocks 1.5 m in diameter. During 19-21 May explosions occurred at a rate of 5-8 per hour, and generated ash plumes that rose almost 1 km and drifted 10-20 km S, SW, and W. Some explosions were accompanied by rumbling audible more than 30 km away, and shock waves that vibrated structures in Morelia (9 km SW) and Panimache (8 km SW). Incandescent material was ejected 200-300 m above the crater rim, and generated avalanches of material within the Seca, Ceniza (SSW), and Las Lajas (SE) drainages that reached vegetated areas. Ash fell in areas downwind including in Santa Sofia (12 km SW), Morelia, Panimache I and II, and Finca Palo Verde. A lava flow 700-800 m long was active in the Ceniza drainage. Small ash explosions at Fuego on 11 and 12 May rose to 5 km (15,000 ft) a.s.l. or approximately 1 km (3,280 ft) above the summit. The ash dispersed quickly to the southwest and was visible on webcams. Activity increased on 14 April and remained elevated through 17 April. Moderate-to-strong explosions were detected at a rate of 6-9 per hour, and sometimes produced shock waves that vibrated houses in Morelia and Panimache. Dense ash plumes rose as high as 1.1 km and drifted 20 km W and S, though winds also carried the ash to higher altitudes to the SE. Incandescent material was ejected as high as 300 m above the crater rim, and generated avalanches of material in the crater area. Ashfall was reported in areas downwind including in Santa Sofía, Morelia, Panimache I and II, El Porvenir, and Finca Palo Verde. The rate of explosions increased to 7-10 per hour on 16 April; explosions sometimes caused structures in Panimache, Morelia, La Reina, and Alotenango (8 km ENE) to vibrate. A lava flow traveled 1.3 km down the Seca drainage. INSIVUMEH reported that during 7-10 April explosions at Fuego generated ash plumes that rose as high as 1.1 km and drifted 10-15 km SW and S. Sometimes the explosions were accompanied by weak shock waves. Incandescent material was ejected as high as 200 m above the crater rim, and generated avalanches of material in the Seca (Santa Teresa, W), Cenizas (SSW), Las Lajas (SE), and Trinidad (S) ravines. During 9-10 April ash fell in areas downwind including in Santa Sofia (12 km SW), Morelia (9 km SW), Panimaché (8 km SW), Sangre de Cristo (8 km WSW), and San Pedro Yepocapa (8 km NW). (INSIVUMEH) - Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua.

GUATEMALA - Santa Maria - Santiaguito

September 15th, 2021

As of the 14th of September, INSIVUMEH reported that airplane turbine-like sounds generated by scattered degassing in the dome rising 300 meters from the Caliente dome and by gray-colored explosions dispersing in a west and south-west direction; during the night and early in the morning of September 14, they generated weak incandescent avalanches from the dome of the dome to the level of the vegetation. Ash falls are reported on the volcanic perimeter. Due to the permanent extrusion of the material and its instability, weak and moderate debris avalanches have been observed from the dome of the Caliente dome on the western and southwest flanks; there is a likelihood that they generate moderate to strong pyroclastic flows. INSIVUMEH reported that during 18-25 August daily explosions at Santa Maria's Santiaguito lava-dome complex generated ash plumes that rose 2.8-3.5 km high. INSIVUMEH reported that during 4-10 August daily explosions at Santa Maria's Santiaguito lava-dome complex generated ash plumes that rose as high as 1 km above the summit and drifted as far as 7 km SW and W. Incandescence from the complex was occasionally visible at night. Collapses of blocky lava from Caliente dome sent avalanches down the S, SW, and W flanks, often reaching the base, and caused minor ashfall mostly on the volcano's flank. Ashfall was also reported in San Marcos (8 km SW), Loma Linda Palajunoj (6 km WSW), and surrounding farms during 3-4 and 8-9 August. Heavy rainfall on 7 August caused a lahar to descend the Tambor River, carrying branches, tree trunks, and blocks up to 3 m in diameter.INSIVUMEH reported that during 13-20 July daily explosions at Santa Maria's Santiaguito lava-dome complex generated ash plumes that rose as high as 1 km above the summit and drifted as far as 12 km SW and W. Collapses of blocky lava from Caliente dome sent avalanches down the SW and W flanks, often reaching the base, and caused minor ashfall mostly on the volcano's flank. Ashfall was also reported in San Marcos (8 km SW) and Loma Linda Palajunoj (6 km WSW) during 14-15 and 19-20 July. On 15 July blocks of extruded lava formed a lava flow on the W flank that was 700 m long. Block-and-ash flows descended the W and NE flanks. INSIVUMEH reported that during 1-8 June daily explosions at Santa Maria's Santiaguito lava-dome complex generated ash plumes that rose as high as 1.1 km above the summit and drifted SE, SW, and W. Collapses of blocky lava from Caliente dome sent avalanches down the S, SW, and W flanks, sometimes reaching the base, and caused minor ashfall mostly on the volcano's flank. Ashfall was also reported in San Marcos (8 km SW) and Loma Linda Palajunoj (6 km WSW) during 4-5 June.INSIVUMEH reported that on May 31 weak explosions occurred accompanied by ash plumes at 2,800m asl., dispersed over 5 km to the southwest. The main activity remains lava extrusion, which generates avalanches of boulders on the western and southern flanks. This activity can be the cause of pyroclastic flows in different barrancas, and / or lahars following the intense rains of these days.uring the weekend, the descent of different lahars was observed in the tributaries of the barrancas Seca and Mineral, tributaries of the Pantaleon river, and in the Ceniza barranca, tributary of the Achiguate river. These lahars are linked to the heavy rainfall in the Fuego region. INSIVUMEH reported that on 15 May lahars descended Santa Maria's Cabello de Ángel (a tributary of Nima I) drainage, carrying tree trunks, branches, and blocks 1-3 m in diameter. The lahars reached the El Faro estate. The next day lahars descended the Cabello de Ángel and Nima I drainages carrying blocks up to 1 m in diameter. The lahars were 25 m wide and 1 m deep, and had a sulfur odor.INSIVUMEH reported that during 24-30 March weak explosions at Santa Maria's Santiaguito lava-dome complex generate ash plumes that rose to 2.8-3.4 km (9,000 ft-11,000 ft) a.s.l.  and drifted W, NE, SW. Collapses of blocky lava from the Caliente dome sent avalanches on the S and SW flank of the Caliente dome, causing minor ashfall around the volcano. Block avalanches were also observed on the E and S flanks; ashfall was reported in San Marcos (8 km SW) and Loma Linda Palajunoj (6 km WSW) on 25 and 27 March. Minor pyroclastic flows  were reported on 28 March. scientific blog about Santiaguito). The massive dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santa Maria has occurred episodically from four westward-younging vents, the most recent of which is Caliente. Dome growth has been accompanied by almost continuous minor explosions, with periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.

GUATEMALA - Pacaya volcano

August 26th, 2021

INSIVUMEH reported that reported that white-to-blue gas-and-steam emissions rose as high as 600 m above Pacaya's Mackenney crater and drifted as far as 2 km S, SW, and N
during 18-25 August. Seismic stations recorded some weak explosion and degassing events on 18 August.INSIVUMEH reported that gas emissions rose as high as 1.1 km above Pacaya's summit and drifted as far as 1 km S and SW during 10-17 August. Two explosions produced ash plumes that drifted S on 13 August.INSIVUMEH reported that explosions at Pacaya were recorded at 0905, 1340, and 1421 on 4 August, a departure from the low levels of activity observed during the previous four months. The explosions produced ash plumes that rose about 1 km above the summit and drifted 12 km N, causing ashfall in Mesa Altas, Mesa Bajas, and Villa Canales. The report noted that the cinder cone in Mackenney Crater had been destroyed during the previous eruption phase and the crater was about 100 m deep. Cracks were seen around the crater indicating areas of instability at the summit. Steam-and-gas plumes rose as high as 1 km above the summit and drifted as far as 3 km in multiple directions during 5-10 August. No explosions were heard or visually observed, though the seismic network recorded weak explosion signals during 6-7 August. INSIVUMEH reported that the volcano presents the characteristics of a new phase of activity after almost 4 months of low activity. The volcano could have a continuous explosive behavior, with formation of lava flow and eruptive plumes. On August 4, a constant degassing was observed, and in addition there were 3 moderate explosions (9:05 a.m., 1:40 p.m. and 2:21 p.m. local time), which expelled columns of ash at an altitude of 3,500 m, with a displacement towards the north, at a distance of about 12 kilometers, reporting ash fall in the communities of Mesías Altas, Mesías Bajas and Villa Canales. The Mackenney Cone crater has undergone significant changes since the last eruptive phase, having destroyed the cinder cones and lava flows that filled its interior, showing a crater of 100m depth ; ashes emanate from deep. Around the crater there are a few cracks, so the area is considered unstable.
INSIVUMEH reported that during 15-22 June white gas plumes rose as high as 600 m above Pacaya's Mackenney Crater and drifted as far as 5 km NW, W, and SW. Some weak explosions were recorded by the seismic network during 17-18 June. INSIVUMEH reported that ash plumes rose around 500 m above the summit and drifted 5-10 km N, NW, SW, and S during 18-21 and 24-25 May. Some explosions were recorded by the seismic network during 22-23 May; white-and-blue gas plumes rose 300-700 m and drifted 5 km W during 23-24 May.INSIVUMEH reported that during 12-18 May the cone on Pacaya's N flank (near Cerro Chino) continued to be active, feeding lava flows and occasionally ejecting incandescent material as high as 40 m. The lava flow slowly advanced mainly W, though remained about 2.4 km long. The flow also spread laterally and shed incandescent blocks, especially along the flow margins and where the flow travels down steep slopes. Gas-and-ash plumes visible almost daily rose as high as 900 m above the summit and drifted W, SW, and S. Ashfall was reported in El Rodeo (4 km WSW) during 15-16 May and in El Patrocinio (about 5 km W) during 15-17 May.INSIVUMEH reported that the observation on 7th of May showed of periods of degassing of white and gray color at the Mackenney crater of the Pacaya up to 900 meters above the crater, moving north and northeast. Effusive activity is maintained at the level of the crack on the northwest flank; it feeds a flow which descends the southwest flank for about 2,400 m. INSIVUMEH reported that on 6th of May, the activity remained mainly effusive. A white and bluish fumarole rose from Mackenney crater, moving south. The effusion continues on the new crack of the NE flank; the lava flow descends towards the SW and reaches 2,300 m. long. One of the flows does not move, and another moves slowly. Heavy rains hit Guatemala causing floods, landslides and lahars; A moderate lahar is reported in the Rio Nima and its tributary the Rio Samala, drainages of the Santiaguito. INSIVUMEH reported that a new effusive phase of the Pacaya began on April 29 around 5 a.m. and is maintained, both at the level of the Mackenney crater, with a lava flow towards the south-east 200 meters long, and at the level of a new crack formed this April 29 in the northwest, with a lava flow; at the level of this crack, one observes a continuous degassing and some weak explosions, with noises of train locomotive. This last flow, moving towards the southwest, is only 100 meters from an area called La Brena, affected by the previous flows, and has several ramifications INSIVUMEH analysis 2019 mid 2020 Pacaya is a complex basaltic volcano constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. During the past several decades, activity at Pacaya has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of MacKenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the cone. New Webcam

***************************************************************************************************************************************************************************************************

COSTA RICA - Irazu volcano

November 6th, 2020

OVSICORI-UNA reported that Irazu's seismic network recorded a significant landslide in the W part of the volcano on 4 November along with a lahar. A small thermal anomaly was detected in MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data. OVISCORI reported that the fissured slope of the Irazú volcano, located on the western flank of the Carthaginian colossus, collapsed on the morning of August 26 at a rate that remains to be determined. The event took place at around 4:10 a.m. when officials who were there began to perceive a seismic movement and vibration which, according to their reports, lasted for about a minute and a half. Ovsicori expert reported that just yesterday there were at least 100 small landslides; and that between Monday and Tuesday, the crack in the slope had moved 40 centimeters. The displaced materials are estimated to be several million cubic meters of rocks. The president of the National Emergency Commission (CNE) reported that this event is only alandslide and has not relationship with volcanic activity. The damage is material, and only concerns telecommunications installations that could not be moved. Irazú, one of Costa Rica's most active volcanoes, rises immediately E of the capital city of San José. The massive volcano covers an area of 500 km2 and is vegetated to within a few hundred meters of its broad flat-topped summit crater complex. At least 10 satellitic cones are located on its S flank. No lava flows have been identified since the eruption of the massive Cervantes lava flows from S-flank vents about 14,000 years ago, and all known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the W towards the historically active crater, which contains a small lake of variable size and color. Although eruptions may have occurred around the time of the Spanish conquest, the first well-documented historical eruption occurred in 1723, and frequent explosive eruptions have occurred since. Ashfall from the last major eruption during 1963-65 caused significant disruption to San José and surrounding areas.

COSTA RICA- Poas Volcano

August 3rd, 2020

As of the 2nd of August, OVSICORI reported the detection of a bubbling at the northern mouth of Lake Poas. Frequent gurgling pulses are still observed in the lake near Crater A, along with frequent short shaking. A slight extension of the crater continues to be detected. Gas ratios remain stable. On August 2, the aerial fumaroles on the north and east walls of the crater are active, as are the sub-lacustrine fumaroles to the south and north of the lake. Frequent low-frequency volcanic earthquakes and short-lived tremors associated with fumarole activity are recorded. The gas concentrations are measured in small quantities and the deformation of the volcanic building remains stable. As of te 17th of July, OVSICORI reported that the activity is limited to passive degassing and thermal convection of the lake, The fumaroles on the north and east walls of the active crater and the sub-lacustrine fumarole on the southeast side remain active on July 15 and 16. Previously, OVSICORI-UNA reported that the waters of the hyperacid lake, milky green in color, reached 40 ° C. During the day of January 7, the observation of small eruptions in the center of the lake produced the release of water vapor and gas, reaching up to 2 meters in height, through fumarole C, submerged. The old NE / orange fumarole, outside the lake, becomes active again, at a temperature of 80 ° C, and deposits native sulfur on the ground. Constant degassing marks the fumarole field on the eastern edge of the lake.The seismicity on January 9 is stable with less than 150 episodes / day and occasionally a tremor of variable frequency and short duration. The permanent deformation is stable, with a slight tendency towards inflation. Previous news 2020 - OVSICORI reported that a new fumarole was located on the eastern side of the crater for a few days. From December 16th until 18th a part of Day, the crater having been subsequently masked by fog. However, when there is a gap providing sufficient visibility on the crater, we no longer notice the fumarole on the webcam. The seismic activity remains comparable to that of the previous days, and the other parameters are within the standards. According to the latest report dated 6th of October from OVSICORI-UNA, over the past few days the sulfur dioxide emissions from the Poás have caused a smell of sulfur in neighboring areas and acid rain has been recorded in the Poás Volcano National Park ( PNVP) and the National University of Costa Rica (UNA). Seismic activity was higher on October 6 compared to the day before. OVSICORI reported that on the morning of May 14, an SO2 peak of 29.2 ppm was recorded. On the other hand, from the point of view, maximum concentrations of SO2 greater than 2 ppm were detected. Band tremor is observed in the range of 1 to 5 Hz. The lowest frequency tends to be persistent, unlike the highest frequency.The OVSICORI also reported stable CO2 / SO2 and H2S / SO2 ratios, around 1.0 and 0.1, respectively As of the 6th of May, OVSICORI reported that during the day, the hot magmatic gases fed the fumarole, with separate exhalations of 5-6 minutes, with a seismic signature.The volcano continues to present an average of 300 earthquakes of low frequency and low amplitude per day. The measured magmatic gas concentrations remain low, with SO2 concentrations of less than 5 parts per million (ppm), an H2S / SO2 ratio of less than 0.1 and a slight decrease in the CO2 / SO2 ratio with values ​​around 0.7. OVSICORI reported that seismic activity is higher on February 25 compared to the previous day. A slight increase in seismic activity was observed with frequent low frequency (LP) volcanic earthquakes which showed an increase in amplitude, as in the almost continuous volcanic tremor. OVSICORI reported that fumaroles still rose the acid lake which remains filled in this season. The sulfur dioxide concentration on January 26 is max. 24 ppm, down on January 27 with less than 0.4 ppm measured at the ExpoGas station. Seismic activity remains stable. Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica's most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2,708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7,500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world's most acidic natural lakes, with a pH of near zero. Web camera from OVSICORI-UNA.

COSTA RICA - Turrialba volcano

July 25th, 2021

OVSICORI-UNA reported that at 11:30 a.m. local time on July 23, 2021, a one-minute eruption was recorded at the Turrialba volcano. Due to cloud cover, there were no visual observations, but ashfall was reported 3.5 km west of the volcano. This eruption occurred a few hours after the start of a rainy event. The rain is still on the region. Two lakes formed near the active crater, under the effect of these heavy rains. The H2S / SO2 ratio was measured yesterday showed a slight decrease compared to the previous week. OVSICORI-UNA reported that an eruption at Turrialba at 1800 on 31 May 2021 produced an ash plume that rose 300 m above the crater and drifted SW. Residents in several areas reported volcanic gas odors and rumbling, and minor ashfall was reported in Monte Calas and La Central. Previous news 2020 - On 21 August OVSICORI-UNA reported that fracturing of SW wall of Turrialba's active crater, along with an area of incandescence within the fracture zone, had been observed during the previous month. An eruption was recorded at 1253 on 22 August, though a plume was not visible due to weather conditions. At 2301 on 24 August a plume rose 1 km above the crater rim. OVSICORI-UNA reported that there were 19 minor ash emissions recorded at Turrialba during 4-5 August, with event durations lasting no longer than three minutes and plumes rising no higher than 200 m above the summit. Four more events were recorded on 5 August, with event durations lasting less than 10 minutes. Plumes again rose no higher than 200 m. OVSICORI reported that the activity since June 2020 was characterized with small eruptions, then on July 30 and 31, various eruptive episodes followed one another, with columns of gas and ash reaching 200 meters above the summit. On August 1, the plume of gas and ash reached 500 meters above the crater.OVSICORI-UNA reported that during 22-23 July white steam plumes from Turrialba contained a minor amount of ash on one occasion. OVSICORI-UNA reported that ash emissions of variable densities were visible at Turrialba almost daily during 16-20 July. Ash plumes rose as high as 200 m above the crater rim each day during 16-18 July. OVSICORI-UNA reported that a passive emission occurred on July 16, 2020 at 12:09 p.m., accompanied by an ash plume 200 meters above the crater; it lasted 2 minutes. This episode was followed by several other very diluted shows during the day. A peak in the CO2 / SO2 and H2S / SO2 ratios was recorded overnight, before returning to values ​​similar to those of the day before. OVSICORI-UNA reported that passive emissions with minor amounts of ash were occasionally visible at Turrialba during 9-10 July. OVSICORI reported that small emissions occurred at a low height and almost daily between July 1st and 7th, excepted on July 3. On July 6 at 9 a.m., a plume of gas and ash reached a few hundred meters, causing localized ash falls. On July 7, no significant change in gases was observed. However, the CO2 / SO2 ratio fluctuated from 12.3 to 10.3; while the H2S / SO2 ratio remains between 0.3 and 0.4. However, the SO2 concentration varies between 3.3 and 4.6 ppm. During the first hours of today, passive degassing was observed. However, there are sporadic ash emissions, the last reported yesterday morning. OVSICORI-UNA reported that at 08:18:00 local time on June 29, 2020 an eruption is recorded with a column that rises 100 meters above the height of the crater and 3440 meters above the level of the sea. (11,283.2 ft). Duration of activity: less than a minute. Seismic activity is similar to that of the day before. During the past 24 hours and when the weather was favorable, several ash eruptions were observed (local hours: 13:48, 17:39 23:03 1:07 2:32 03:06 4:12 8:18) . The plume of these eruptions did not exceed 100 m above the level of the crater. At least 2 of these eruptions were accompanied by ballistics projected on the north wall of the active crater (at 1h07 and 4h12). A subsidence of the volcanic massif is observed, as well as gas ratios in the values ​​of the last days. OVSICORI-UNA reported that ash emissions at Turrialba rose no higher than100 m above the crater rim from events recorded at 1714, 1723, and 1818 on 18 June and at 1023 and 1039 on 19 June. A small ash emission was visible at 1715 on 22 June. OVSICORI-UNA reported that an eruption ( probably phreatic) was observed on the webcams on April 12 around 9:40 pm. Previous news 2019 - OVSICORI-UNA reported that an eruptive event at Turrialba was detected at 1441 on 28 July, though inclement weather conditions prevented visual confirmation. Ashfall was reported in La Picada (N) and El Retiro farms. As of the 17th of July, OVSICORI-UNA reported that weak and stable activity remained, with a plume of steam and gas, dispersed towards a west and south-west sector.The crater glow recorded by webcams remained low, compared to that of previous months.Two small lakes are always mentioned at the summit; a third forms temporarily after a few hours of rain, then disappears. Some LP earthquakes were recorded during the past week. On 19 May OVSICORI-UNA reported that passive, short-duration emissions with small amounts of ash had been sporadically occurring at Turrialba over the previous week. Prolonged and intermittent periods of emissions with minor amounts of ash were visible during 19-20 May.OVSICORI-UNA reported that in the past week activity remained low and stable. The LP earthquake record was maintained however.On 27 April at 7:22, a short eruption occurred , accompanied by a small plume of brown ash that rose 100 meters above the summit. OVSICORI-UNA reported that minor ash emissions rose from Turrialba on 8 April. OVSICORI-UNA reported that gas emissions at Turrialba significantly decreased on 30 March. An eruption recorded at 0735 on 31 March was followed by passive emissions with a low concentration of magmatic gases at least through 1 April. Seismicity continued to be dominated by low-frequency events. OVSICORI-UNA reported a period of continuous emissions from Turrialba during 20-22 March. The emissions were characterized as white water vapor plumes with periodic pulses of diffuse ash rising 300 m above the vent rim and drifting W and SW. A sulfur odor was noted in Tierra Blanca de Cartago on 22 March. Only water vapor plumes with a low concentration of magmatic gases were visible during 23-26 March. OVSICORI-UNA reported that during 9-12 March plumes of gas sometimes containing small amounts of ash rose as high as 1 km above Turrialba's crater rim. OVSICORI-UNA reported that an event at 0444 on 1 March produced a plume that rose 200 m and drifted NE. A period of continuous emissions rising 200-300 m was recorded during 2-4 March; the plumes contained minor amounts of ash at least during 2-3 March. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m wide summit depression that is breached to the NE. Most activity at Turrialba originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred at Turrialba during the past 3500 years. Turrialba has been quiescent since a series of explosive eruptions during the 19th century that were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.INFORMATION from OVSICORI - SVE Volcanic fieldtrip on group request.

COSTA RICA - Rincon de la Vieja volcano

August 29th, 2021

OVSICORI-UNA reported that three small phreatic eruptions were recorded on August 27, 2021 at Rincon de La Vieja, respectively at 19:15, 20:49 and 20:53 local time. The most important happened at 8:49 p.m. There was no visibility, no report. Duration of the activity: 2 minutes. At 2:46 p.m. local time on August 28, 2021, a phreatic eruption was recorded at the Rincon de la Vieja volcano, with a column that rises 1,000 meters above the height of the crater and 2,916 m above sea level. altitude. At the time of this report, the winds are blowing from the southwest. Duration of activity: 1 minute. Seismic activity is higher the day before. The amplitude of the tremor increased after this event in particular in the low frequencies of approximately 1 hour at the beginning of the night. Until the moment of this report, the tremor remains with a greater amplitude than the day before. OVSICORI-UNA reported that eruptive events at Rincon de la Vieja were recorded at 1052 on 12 August and 0703 on 13 August, though weather conditions prevented visual confirmation of emissions. Fumarolic activity within the crater increased during 16-17 August. OVSICORI reported that at 11:33:00 local time on July 31, 2021, an eruption was recorded; the height reached by the column is unknown due to the visibility conditions of the site. Duration of activity: 2 minutes.OVSICORI reported that The explosive eruption of the volcano continues. Since the last powerful phreatic eruption on 29 June, another hydrothermal explosion occurred on 5th of July at 16:31 local time. The plume reached up to 12,900 ft (3,900 m) altitude. OVSICORI reported that on 28th of June at 5:42 a.m. an eruption was recorded at the Rincón de la Vieja volcano, with a plume of ash and steam, which rose to 2,000 metres above the crater height of 3,916 m. a.s.l. (meters above sea level) for 3 minutes. Ash falls are reported in: the northern and northwestern sector: Gavilan de Dos Ríos and Bromelias, as well as a sulphur smell in the northern and northwestern sector. The eruption has generated lahars in the Azul, Azufrada and Pénjamo rivers, which descend from the crater in the northern sector.Previous news 2020 - OVSICORI-UNA reported that two eruptive episodes occurred on November 18. The first at 10:24 local time was accompanied by a plume of 1,000 meters above the active crater.For the second at 2:50 p.m. local, identified by infrasonic signal, we could not know the height of the plume, due to poor visibility conditions. According to the Ovsicori, between January and October, the volcano presented more than 1,300 eruptive episodes. Its activity has increased since May and the eruptions are recurrent last week. OVSICORI-UNA reported that at 5:40:00 local time on November 11th, 2020, an eruption was recorded with a column that roses 1,000 meters above the height of the crater and 2,916 meters above the sea ​​level (meters above sea level) (9,564.48 ft). Duration of activity has been 5 minutes. OVSICORI-UNA reported that on 9th of November At 3:23 p.m. local time, an eruption was recorded at Rincón de la Vieja, with a dark gray plume rising 100 meters above the height of the crater and 2016 m.a.s.l. (meters above sea level) (6,612.48 feet). Rincon de la Vieja, a composite stratovolcano in Northwestern Costa Rica forms a NW-trending ridge consisting of several eruptive centers that have coalesced through time. Elevations of the individual cones range from 1670 to 1920 meters and nine craters are readily identified by their topographic expression. Numerous phreatic eruptions have occurred since 1851 (as recently as November, 1995), all from the Active Crater. The last major eruption involving juvenile magma occurred at ~3,500 ybp, producing the Rio Blanco tephra deposit. Ash, pumice, and lithics ejected during this eruption were deposited in a highly asymmetrical dispersal pattern WSW of the Active Crater, indicating strong easterly prevailing tradewinds at the time of the eruption. Historical descriptions of the summit crater morphology suggest that conditions there have changed little over the past century.
*****************************************************************************************************************************************************************************************************

NICARAGUA - Masaya volcano

December 1st, 2020

As of the 1st of December, INETER reported that Low-level eruptive activity of the volcano continues by near-constant ash emissions recorded during the 30 November. The activity at the crater has been mostly small-to-moderate only, but near-constant a lot in frequency of explosions as INETER surveillance camera observed. According to local news, ashes ejection occurred on October 15th, 2019. Samples were collected and recorded in the municipality of Ticuantepe, which, as a result of the change in wind direction, received the ash particles from the volcano. If The winds continued to blow from south-east to north-west the city of Managua could be affected by gases or falls of pyroclastic material. Previous notable news 2017 - The Washington VAAC reported that on 13 May a west-drifting ash emission from Masaya was identified in satellite images and observed by a pilot. Previously, based on satellite images, the Washington VAAC reported that on 21 January a possible emission from Masaya with minor ash content drifted almost 25 km NW.Based on analysis of satellite imagery, the Washington VAAC reported that on 5 January a gas, steam, and ash plume from Masaya drifted W. Based on webcam images, the Washington VAAC reported that a steam-and-gas plume from Masaya possibly contained some ash on 3 November. Based on analysis of satellite imagery, the Washington VAAC reported that on 28 August a gas plume with possible ash rose from Masaya to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted over 45 km W. Based on analysis of satellite imagery, the Washington VAAC reported that on 15 August a possible ash plume from Masaya rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted NW. Elevated seismicity and a thermal anomaly detected in satellite images indicated increased activity. In a report posted later that day the Washington VAAC noted that the webcam recorded minor ash emissions. Previously, INETER reported that during 18-19 May RSAM values at Masaya fluctuated between 300 and 700 units which are low-to-moderate values. The lava lake in Santiago Crater continued to strongly circulate and the vent widened through 24 May. INETER reported that between 1700 and 2400 on 3 May volcanic tremor at Masaya increased; RSAM values spiked at 1,000 units and then dropped to 250. Gas emissions at Santiago crater were at low-to-moderate levels, and the lava lake continued to strongly circulate. On 5 May RSAM values fluctuated between 250 and 500 units which are low-to-moderate values. INETER reported that during 27 April-3 May gas emissions at Masaya's Santiago crater were at low-to-moderate levels. Seismic tremor decreased though continued to fluctuate between low to moderate levels. The lava lake continued to strongly circulate. INETER reported that during 20-23 April gas emissions at Masaya's Santiago crater were at low-to-moderate levels and RSAM values were at moderate-to-high levels. On 22 April the level of the lava lake decreased, though strong lake circulation was reported on 23 April. INETER reported that during 6-12 April the lava lake on the floor of Masaya's Santiago crater remained visible. RSAM values were at high levels and gas emissions were low. (Time-lapse video). Previously on 30 March INETER reported that the lava lake rose in Masaya's Santiago crater and several landslide deposits from the precious few days were visible in the NE crater. RSAM values were at moderate-to-high levels. On 4 April SINAPRED noted that tremor continued and the widening of the vent in the SE part of the crater persisted. According to a SINAPRED report on 28 March INETER noted that lava-lake activity at Masaya's Santiago crater was intense and the craters continued to gradually widen. Emissions were at low levels. INETER reported that on 3 March the lava lake on the SW floor of Masaya's Santiago crater was very active. Volcanic tremor remained high and RSAM values were at high to very high levels. Previously, INETER reported that the lava lakes in three vents on the floor of Masaya's Santiago crater were active during 20 February-1 March. Volcanic tremor remained high and RSAM values were at high to very high levels. On 23 February small explosions ejected spatter onto the crater floor. During fieldwork volcanologists observed active lava lakes in all three vents on the crater floor, and noted that the inner walls of the crater were being eroded due to the lava lake. A new vent was forming on the SE part of the crater floor. During a second visit on 24 February INETER staff noted that the vents had become larger due to landslides on the crater walls. Small streams of lava sporadically originated from the NE vent. By 1 March the two vents in the SW part of the crater had almost merged. On 17 February INETER reported that the lava lake on the floor of Masaya's Santiago crater remained visible. RSAM values were at high levels and gas emissions were low. During 10-11 February sulfur dioxide emissions at Masaya rose to high levels (1,500 tons per day), and RSAM values were at moderately-high levels due to higher levels of volcanic tremor. This activity coincided with an increase in the size of the lava lake. Gas emissions were at moderate and low levels on 12 and 16 February, respectively. Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindiri­ and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage. (GVN/GVP)

NICARAGUA - Telica volcano

September 3rd, 2021

NETER reported that at 0525 on 1 September an explosion at Telica produced an ash plume that rose 250 m above the crater rim and drifted N and NW. Emissions periodically continued later that day, without explosions, and caused minor ashfall in areas to the NW, W, and SW including in the communities of Aguas Frias, San Pedro Nuevo, and Las Marias (7 km NNW).INETER reported that at 0500 on 29 June ash-and-gas emissions from Telica rose 200 m above the crater rim and drifted SW. The Washington VAAC noted that ash was emitted during 2-3 July. A few discrete emissions and ash near the crater were visible in webcam images on 2 July, and possible diffuse ash just W of the crater was seen in satellite images. Plumes likely rose to 1.2-1.5 km (4,000-5,000 ft) a.s.l. Another steam-and-ash plume drifted SW and then turned N. On 3 July possible ash plumes rose to 1.5 km (5,000 ft) a.s.l. and drifted WSW.INETER reported that a series of 16 small explosions at Telica began at 0508 on 22 May, and produced ash-and-gas emissions that rose 250 m above the crater. Tephra from the plumes fell back down into the crater.INETER reported that volcano recorded gas and ash explosions in the morning of May 8, 2021, according to the images of the webcam. Previous news 2020 - INETER reported that there were 598 low energy ash-and-gas explosions at Telica recorded during 1-3 December, making a total of 775 recorded since the activity began on 30 November. Gas-and-ash plumes rose 50-400 m above the crater rim and mainly drifted SW. Ashfall was reported in areas downwind including in Zarandaj (7 km WSW), Cristo Rey (6 km W), Las Colinas (7 km WSW), Garrobo Empinado (8 km SW), El Panal (9 km SSW), Canta Rana, Ceibo Chachagua (10 km SW), Las Mercedes, Punta Arena (11 km SW), La Virgen, and Filiberto Morales (15 km WSW). INETER reported that moderate eruptive activity has been observed since November 30th, characterized by emission of earthy ash, mostly present, at the regular rate of dozens of explosions. A significant part of the ash emitted would come from ancient lava present in the crater and conduits. Due to the direction of the wind, the communities that are most affected at this time by the ash from the volcano are: El Panal, Cristo Rey, Los Cocos and Los Ángeles, according to the Humboldt Center for Environmental Research. The VAAC Washington has issued an advisory regarding volcanic ash, reaching 1,500 m. altitude towards the southwest of the volcano for December 1st. As of the 2nd of November; explosive eruption of the volcano continues at fluctuating intensity characterized by occasional ash emissions. Since 29 October INETER recorded 9 small explosions containing emissions of water vapor, gases and small amounts of ash. An ash plumes rose 820 ft-1,968 ft (250 m-600 m) above the summit crater. As of the 8th of October, INETER reported that explosive eruption of the volcano continues characterized by moderate content of ash emissions. 5 explosions were detected during the past 24 hours. On 7 October at 07:42 local time the strongest eruption occurred. An ash plume rose 1,968 ft (600 m) above the summit and drifted southwest. INETER reported that a new explosions occurred on July 29, starting around 5:28 am; they were accompanied by emissions of ash and gas, about thirty meters above the crater, blown by the northward winds, without affecting the population.As of the 21st of July, SINAPRED reported that small gas and ash explosions occurred with release of materials 200 meters above the edge of the crater; these explosions are produced following the obstruction of the conduit by small landslides, and accumulation of gas. The tremor has increased from 27 to 153 units during the explosion and remains high, indicating a possibility of small explosions in the following hours or days. Telica, one of Nicaragua's most active volcanoes, has erupted frequently since the beginning of the Spanish era. This volcano group consists of several interlocking cones and vents with a general NW alignment. Sixteenth-century eruptions were reported at symmetrical Santa Clara volcano at the SW end of the group. However, its eroded and breached crater has been covered by forests throughout historical time, and these eruptions may have originated from Telica, whose upper slopes in contrast are unvegetated. The steep-sided cone of 1061-m-high Telica is truncated by a 700-m-wide double crater; the southern crater, the source of recent eruptions, is 120 m deep. El Liston, immediately SE of Telica, has several nested craters. The fumaroles and boiling mudpots of Hervideros de San Jacinto, SE of Telica, form a prominent geothermal area frequented by tourists, and geothermal exploration has occurred nearby.(GVN/GVP)

NICARAGUA - Momotombo

July 7th, 2020

SINAPRED reported that a seismic swarm at Momotombo began at 0657 on 6 July and by the next day a total of 51 earthquakes had been recorded. The largest event was an M 2.6 located 9 km SE of the volcano, beneath Lake Managua, at a depth of 3 km. INETER noted that the earthquakes were located along a fault and not directly related to the volcano. INETER recorded small explosions on February 26 at Momotombo; the activity started at 13:55 with an increase in gaseous emissions, then small gas explosions at 14:45 and 15:30, the last accompanied by an earthquake of M1.4. The last eruptions dated from December 2015 and January 2016. 2016 eruption reports - INETER reported that three explosions at Momotombo during 5-6 April ejected incandescent material onto the flanks and produced gas-and-ash plumes that rose 500 m above the crater. During 6-7 April there were 27 small explosions for a total of 438 explosions detected since 1 December 2015. The explosions ejected some incandescent material, and generated ash plumes that rose 200 m and drifted SW. RSAM values were low during 5-12 April. SINAPRED reported that on 2 April explosions at Momotombo produced gas-and-ash plumes and ejected incandescent tephra. On 28 March SINAPRED reported that 38 explosions were detected at Momotombo over a period of 24 hours, which ejected gas-and-ash plumes and incandescent tephra. The strongest event occurred at 1140 on 27 March and generated a plume that rose 1 km. During 2-3 March INETER reported that 53 small explosions at Momotombo generated low-energy gas plumes that rose 300 m above the crater. On 3 March some of the explosions produced ash plumes that drifted W and SW. RSAM values were at low to moderate levels. SINAPRED reported that during 5-6 March there were 78 explosions for a total of 279 explosions detected since 1 December 2015. One of the most significant explosions occurred on 6 March. The next day gas-and-ash plumes rose as high as 1 km above the crater. INETER reported that during 19 February-1 March explosions at Momotombo were detected daily; 88 explosions were detected during 1 December 2015-1 March 2016. Explosions produced ash plumes, and ejected incandescent material onto the N, NE, E, and SE flanks. Ash plumes rose 1.7-2.3 km above the crater and drifted SW during 21-22 February; gas-and-ash plumes rose 1.8 km on 24 February; an ash plume rose 1 km on 25 February; and a small gas-and-ash plume rose 300 m on 26 February. A pyroclastic flow traveled 3.5 km down the N and NW flanks during 23-24 February. Explosions on 27 February ejected tephra 300 m above the crater. At 0646 on 1 March explosions ejected gas and incandescent tephra; an ash plume rose 1.2 km and drifted W and SW. The gas-and-ash emissions lasted 16 minutes, causing the plume to widen and darken the sky. INETER reported that during 16-17 February two explosions at Momotombo were accompanied by tremor, and produced ash emissions and ejected incandescent material onto the flanks. The first and largest explosion (recorded at 0344) ejected incandescent tephra 800 m above the crater. RSAM values were at low-to-moderate levels. Based on webcam views and satellite images, the Washington VAAC reported that on 19 February ash emissions rose to an altitude of 3.6 km (12,000 ft) a.s.l. and drifted SW and WSW. The next day ash emissions drifted SW. On 21 February ash plumes drifted about 80 km W and 25 km E. INETER reported moderate levels of gas emissions at Momotombo on 10 February; volcanic tremor and gas emissions increased to moderate-to-high levels the next day. An explosion on 12 February produced small ash emissions and ejected incandescent material onto the N and SE flanks. An explosion at 1305 on 15 February generated an ash plume that rose 2 km above the crater and ejected incandescent tephra onto the N and NE flanks. INETER reported that during 4-5 and 7-8 February both RSAM values at Momotombo were low to moderate and emissions were at moderate levels. INETER reported that during 26-29 January RSAM values at Momotombo were at low to moderate levels, and gas emissions were at moderate levels. Crater incandescence from high-temperature gas emissions was observed at night during 26-27 January. A Strombolian explosion at 0344 on 30 January ejected tephra onto the E, NE, N, and NW flanks, and produced gas emissions. At 0529 on 31 January another explosion also ejected gas, ash, and incandescent material. Ashfall was reported in nearby areas including the communities of Boqueron, Puerto Momotombo (10 km WSW), and La Sabaneta. Moderate levels of gas emissions drifted SW towards Puerto Momotombo.INETER reported that during 20-21 January both RSAM values and emissions at Momotombo were low. Volcanic tremor increased at 0900 on 22 January, causing RSAM values to rise to high levels. There were no changes to emissions. INETER recommended to the public to stay at least 6 km away from the volcano. INETER reported that at 1209 on 12 January a large explosion at Momotombo ejected incandescent material onto the flanks and generated an ash plume that rose 4 km above the crater. Tephra was deposited on the E, NE, N, and NW flanks. Ash plumes drifted downwind and caused ashfall in the communities of Flor de Piedra, La Concha (40 SSE), Amatistan, Guacucal (40 km N), La Palma, Puerto Momotombo (10 km WSW), La Sabaneta, Mira Lago, Asentamiento Miramar, Pancasan, Rene Linarte, Raul Cabezas, and Betania. At around 0500 on 15 January strong volcanic tremor was accompanied by small explosions in the crater; ejected ash and incandescent tephra were deposited on the W flank. Seismicity decreased during 16-17 January. Based on INETER and SINAPRED reports, three gas-and-ash explosions on 2 January, at 1333, 1426, and 1434, excavated the remaining parts of the lava dome which was emplaced about a month ago. An ash plume rose 500 m above the crater, drifted S and SW, and caused ashfall in Puerto Momotombo (9 km WSW). Possible ash plumes from an explosion at 2129 were hidden by darkness. At 0420 on 3 January an explosion ejected lava bombs 2 km away and caused ashfall in La Paz Centro (18 km SW). Lava flows had advanced as far as 2 km down the NE flank. Based on INETER and SINAPRED reports, activity at Momotombo continued through 10 December. Fieldwork revealed a small, incandescent, circular crater halfway up Momotombo's E flank that was fuming during the morning on 6 December. An explosion on 7 December destroyed part of the crater. On 10 December SINAPRED reported that material had been accumulating in the crater since the beginning of the eruption on 1 December. Seismicity during 9-14 December was low and stable. Based on satellite and webcam observations, and seismic data, the Washington VAAC reported that during 2-3 December ash plumes from Momotombo rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted 90-225 km NW and WNW. INETER reported that series of at least 4 small explosions occurred at the volcano on the morning, at 07:49, 08:17, 08:42, and 08:55 local time on 1st of December. The eruptions, in particular the last and largest one, produced steam and ash plumes that rose up to approx. 1 km from the summit. Light ash fall was observed in the community of El Papalonal and near the Momotombo geothermal plant to the SW of the volcano. Later, during the day, It seems that the volcano continues to erupt and have been intensifying its activity with near-continuous strombolian explosions accompanied with hot incandescent material and a small et slowly lava flows went down from the summit crater on the Northeast flank.Ashfall was reported in nearby communities to the W and SW, including La Concha, Los Arcos, Flor de la Piedra, La Paz Centro, and Leon. Some families in La Paz Centro self-evacuated. This is the first eruptive activity of the volcano in 110 years, the last confirmed eruption of Momotombo occurred in 1905 . Momotombo is a young, 1297-m-high stratovolcano that rises prominently above the NW shore of Lake Managua, forming one of Nicaragua's most familiar landmarks. Momotombo began growing about 4500 years ago at the SE end of the Marrabios Range and consists of a somma from an older edifice that is surmounted by a symmetrical younger cone with a 150 x 250 m wide summit crater. Young lava flows from Momotombo have flowed down the NW flank into the 4-km-wide Monte Galán caldera. The youthful cone of Momotombito forms a 391-m-high island offshore in Lake Managua. Momotombo has a long record of strombolian eruptions, punctuated by occasional larger explosive activity. The latest eruption, in 1905, produced a lava flow that traveled from the summit to the lower NE base. A small black plume was seen above the crater after an April 10, 1996 earthquake, but later observations noted no significant changes in the crater. A major geothermal field is located on the southern flank of the volcano. INETER

NICARAGUA - San Cristobal volcano

March 20th, 2021

The Washington VAAC reported that on 19 March a notable ash cloud from San Cristobal rose at least to 12.2 km (40,500 ft) a.s.l. and drifted over 80 km ENE based on satellite data, ash dispersion models, and weather models. SINAPRED reported that a series of five moderate-to-strong vulcanian-type explosions occurred at the volcano on 9th of March 2021 between 13:06 and 13:32 local time. The strongest eruption at 01:25 local time triggered a dense, dark ash column to an estimated altitude of 8,000 ft (2,400 m) which extended about 17 km to the southwest of the volcano. Ashfall was reported in cities of El Viejo, Chinandega and Chichigalapa. Expected explosions in the near future will not threaten inhabited areas, but volcanological observatory recommends to keep general precautions. Previously, last year INETER reported that a low-energy explosion at San Cristobal was detected by the seismic network at 1550 on 4 March 2019. The event produced a gas-and-ash plume that rose 400 m above the crater rim and drifted SW. The symmetrical 1745-m-high youngest cone, named San Cristóbal (also known as El Viejo), is Nicaragua's highest volcano and is capped by a 500 x 600 m wide crater. El Chonco, with several flank lava domes, is located 4 km to the west of San Cristóbal; it and the eroded Moyotepe volcano, 4 km to the NE of San Cristóbal, are of Pleistocene age. Volcán Casita, containing an elongated summit crater, lies immediately east of San Cristóbal and was the site of a catastrophic landslide and lahar in 1998. The Plio-Pleistocene La Pelona caldera is located at the eastern end of the San Cristóbal complex. Historical eruptions from San Cristóbal, consisting of small-to-moderate explosive activity, have been reported since the 16th century. Some other 16th-century eruptions attributed to Casita volcano are uncertain and may pertain to other Marrabios Range volcanoes.San Cristobal's last such activity occurred three years ago. GVN/GVP

NICARAGUA - Masaya volcano

October 20th, 2019

According to news reports, ash was emitted from Masaya on 15 October, causing very minor ashfall in Colonia 4 de Mayo, 6 km NW. Previously, Ineter, reported that an explosion occurred on Sunday, July 21, in the afternoon in the crater Santiago of Masaya. According to official reports, the ashes released did not cause injuries to people who were near the crater and did not pose a problem for neighboring populations, but the authorities did not rule out any additional activities. The Masaya Park has been temporarily closed.Masaya is one of Nicaragua's most unusual and most active volcanoes. It lies within the massive Pleistocene Las Sierras pyroclastic shield volcano and is a broad, 6 x 11 km basaltic caldera with steep-sided walls up to 300 m high. The caldera is filled on its NW end by more than a dozen vents that erupted along a circular, 4-km-diameter fracture system. The twin volcanoes of Nindirí and Masaya, the source of historical eruptions, were constructed at the southern end of the fracture system and contain multiple summit craters, including the currently active Santiago crater. A major basaltic Plinian tephra erupted from Masaya about 6500 years ago. Historical lava flows cover much of the caldera floor and have confined a lake to the far eastern end of the caldera. A lava flow from the 1670 eruption overtopped the north caldera rim. Masaya has been frequently active since the time of the Spanish Conquistadors, when an active lava lake prompted attempts to extract the volcano's molten "gold." Periods of long-term vigorous gas emission at roughly quarter-century intervals cause health hazards and crop damage. GVN/GVP)

*********************************************************************************************************************************************************************************************

El SALVADOR - San Miguel volcano

February 16th, 2021

SNET stated that San Miguel's seismic network recorded long-lasting and continuous periods of volcanic tremor that began on 7 February and continued through 14 February. Discrete earthquakes from minor rock fracturing were also detected. RSAM values fluctuated between 25 and 75 units, below normal values around 150 units. Previous news 2020 - SNET stated that during 30-31 March the seismic network at San Miguel recorded a period of increased seismicity characterized by continuous, low-frequency, tremor-type signals.RSAM values were between 90 and 116 units, lower than the normal values of 150, at a seismic station located on the upper N flank. SNET stated that during 28 February-6 March there were no reports of noises or gas emissions at San Miguel from the network of local observers. Seismicity was stable; 50-60 low-magnitude earthquakes were recorded per hour with RSAM values between 40 and 98 units, lower than the normal values of 150. The sulfur dioxide emission flux was 517-808 tons per day. SNET reported that during 23-28 February activity at San Miguel was low. An increase in the number of very small-magnitude earthquakes was recorded by the VSM seismic station located on the upper N flank. RSAM values were between 45 and 75 units, lower than the normal values of 150. SNET report noted an increase in amplitude of microearthquakes and minor gas emissions form the main crater. Sulfur dioxide levels had also increased. Beginning at 1055 on 22 February an ash emission that lasted 10 minutes long resulted in a small gas-and-ash plume that rose 400 m above the crater rim. Minor ashfall was reported in the area of Piedra Azul, 5 km SW. RSAM peaked at 510 units during the period of emissions, above the normal values of 150, as recorded by station VSM located on the upper N flank. The number of low-amplitude tremor events increased after a quiet period of about 11 hours and were associated with gas emissions; RSAM was 33-97 units and minor gas plumes were visible rising 400 m during 23-24 February. SNET reported that starting at 7:00 p.m. yesterday February 20th, 2020 at 7:50 a.m. Friday 21, the Network of local observers reported the occurrence of a series of rumblings from the volcano. Monitoring data indicates that the volcano has exhibited a change in behavior, evidenced by the increase in the amplitude of microseisms and slight gas emissions by its central crater. The seismicity recorded in the volcano shows signs that may be related to fractures and small internal explosions of the volcano, which indicates an increase in its internal pressure, with the possibility of the appearance of a more significant degassing which can be accompanied by small ash fumes, which, if they occur, will preferably be transported to the southwest flank of the volcano. Previous news 2018 - SNET reported a significant increase in the number of low- and high-frequency earthquakes beneath San Miguel's crater beginning on 22 May. RSAM values fluctuated between 142 and 176 units (normal values are 50-150 units) during 30 May-1 June. Webcam images on 30 May showed a small gray gas emission. On 2 March SNET reported that gas plumes rose as high as 400 m above San Miguel's crater rim during the previous week. Ash was in the emissions on 24, 26, and 28 February, and 1 March. RSAM values fluctuated between 70 and 179 units (normal values are 50-150 units) during 1-2 March. At 2200 on 5 March seismic amplitude began to increase, with RSAM values rising to 318 units by 0600 on 6 March. A webcam recorded minor gas emission during 5-6 March. SNET reported that during 0800-1100 on 19 February gas-and-ash emissions from San Miguel rose 350 m above the crater rim and drifted SW. Ash fell on the upper flanks of the volcano, and a sulfur odor was reported in La Piedra farm. The symmetrical cone of San Miguel volcano, one of the most active in El Salvador, rises from near sea level to form one of the country's most prominent landmarks. A broad, deep crater that has been frequently modified by historical eruptions (recorded since the early 16th century) caps the truncated summit of the towering volcano, which is also known locally as Chaparrastique. Radial fissures on the flanks of the basaltic volcano have fed a series of fresh lava flows, including several erupted during the 17th-19th centuries that reached beyond the base of the volcano on the N, W, and SE sides. The SE-flank lava flows are the largest and form broad sparsely vegetated lava fields. GVN - (SNET)

***************************************************************************************************************************************************************************************************

COLOMBIA - Galeras volcano

April 22nd, 2013

INGEOMINAS reported that during 15-21 May seismicity at Galeras was at a low level; during 19-20 May earthquakes with magnitudes 2.6 or less were concentrated in an area 3 km SW at depths near 4 km. Gas plumes rose 500 m above the crater and contained small amounts of ash during 15-16 and 20-21 May. Sulfur dioxide emissions were low. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). INGEOMINAS reported that during 10-16 April 2913 earthquakes at Galeras were located in various areas as far as 13 km from the crater, at depths no greater than 14 km and with maximum magnitudes of 2. Moderate levels of sulfur dioxide were detected; plumes drifted NW. Cameras recorded ash emissions all week, especially on 9, 11, 12, and 14 April, when pulsating activity produced plumes that drifted W. Plumes rose no more than 1 km above the crater. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity").INGEOMINAS reported that during 30 October-6 November 2012 seismicity at Galeras fluctuated but was slightly lower compared to the previous week. Sulfur dioxide gas emissions were low. Cameras around Galeras recorded gas-and-ash plumes rising from the crater on 30 October and 1 November. The Alert Level remained at III (Yellow; "changes in the behavior of volcanic activity"). Galeras, a stratovolcano with a large breached caldera located immediately west of the city of Pasto, is one of Colombia's most frequently active volcanoes. Webcam image

COLOMBIA - Nevado del Ruiz

September 1st, 2021

As of the 30th of August, SGC reported that the Nevado del Ruiz, remained in unstable conditions, with an activity characterized by constant degassing and sporadic ash emissions. The gas-vapor plumes containing a certain amount of ash reached approx. 5,800 m above sea level and extended west-northwest of the volcano. Seismic activity is mainly concentrated under the Arenas crater and under the NE and SE flanks of the volcano with a downward trend this week. The alert level for the volcano remains at "yellow".SGC reported that an ash emission was observed at Nevado del Ruiz on August 26 at around 8 a.m. thanks to webcams. The column of gas and ash reached a maximum height of 490 m., With a direction of dispersion to the west - north-west. The fall of ashes in the communes located in the direction of the wind is not to be excluded. The Nevado del Ruiz volcano continues in the yellow activity level. On 21 July Servicio Geologico Colombiano's (SGC) Observatorio Vulcanologico y Sismologico de Manizales reported that seismicity at Nevado del Ruiz was generally characterized by higher number of earthquakes that had larger magnitudes than the previous week. Gas-and-steam emissions were sometimes visible in webcam images rising as high as 1.1 km above the summit and drifting WNW and WSW; these emissions sometimes contained ash. Episodes of drumbeat seismicity were recorded during 13-14 and 17 July, indicating ascent or growth of a lava dome in Arenas Crater. The Alert Level remained at 3 (Yellow; the second lowest level on a four-color scale). Previous news 2020 - Servicio Geologico Colombiano, reported that since December 28, 2020 at 09:42 (local time), it has observed a significant increase in volcano-tectonic seismic activity associated with rocks fracturation at the volcanic edifice, located in the northern sector at an average distance of 0.7 km, from the Arenas crater.The recording of a volcano-tectonic earthquake that occurred at 09:42 a.m. (time local) with a magnitude of 3.6 ML (local magnitude), at a depth of 3.0 km. This earthquake was felt by those responsible for the Los Nevados National Natural Park and by the inhabitants of the municipalities of Manizales and Villamaría. Since December 2nd in the evening and during the morning of December 3rd, the SGC has reported a "drumbeat" type seismic activity This type of seismicity is linked to the processes of ascent, location, growth and evolution of a lava dome at the bottom of the Arenas crater. The Nevado del Ruiz alert level remains at yellow. SGC reported that the volcano continues to emit water vapor and gases, mainly sulfur dioxide. The column of gas and vapor reached a maximum height of 2,122 m measured at the top of the volcano on November 4. On November 13, Sentinel-5P / Tropomi detected a strong signal of sulfur dioxide with 11.66 DU of SO2.SGC reported that on the morning of October 18th, the Nevado del Ruiz displayed dense, white plumes of gas and steam, reaching a height of about 1,400 metres, dispersing towards ONO. The activity level is 3 / amarillo, marking a change in the behavior of volcanic activity. As of the 13th of October, SGC reported that the seismicity generated by the fracturing of rocks increased in number of earthquakes and in energy released compared to the previous week.A few "drumbeat" type episodes associated with low energy fracturing have been recorded. They are associated with the process of evolution of the dome of the Arenas crater. Seismicity linked to the dynamics of internal fluids is also on the rise.The SGC does not report significant changes in surface deformation. The gas and steam plumes reached heights of up to 1,350 meters above the summit.The level of activity remains amarillo. As of the 29th of September, SGC reported the weekly bulletin that the volcano continues to present instability, and remains in level 3 / yellow. Seismicity in relation to the dynamics of internal fluids has increased in number of events and in released seismic energy. It is characterized by a continuous tremor, or in pulses, of LP and VLP earthquakes, sometimes associated with gas and ash emissions. The surface deformation does not show significant variations compared to the past weeks. Servicio Geologico Columbiano, informed that the volcano continued to present, during the week of August 18th to 25th, behavioral instability. The seismicity generated by rock fracturing (volcano-tectonics, VT) showed a significant increase in the number of earthquakes and in the seismic energy released, compared to the previous week. This type of seismicity was located mainly in the south-south-east, south-west and north-east of the volcano and, to a lesser extent, in the Arenas crater. The depth of the earthquakes varied between 0.3 and 5.6 km. An increase in VT seismicity stands out, recorded since dawn today in the south-eastern sector, about 2.2 km from the Arenas crater. The two most significant earthquakes occurred at 6:12 am and 7:57 am local time, with a magnitude of 2.8 ML (Local Magnitude), at depths of 3.4 and 3.3 km respectively. These earthquakes were reported to be felt by locals in the volcanic area.The volcano continue to emit water vapor and gases, mainly sulfur dioxide. The gas and steam plumes reached a maximum height of 1,672 m measured at the top of the volcano on August 23. The dispersion of the column was governed by the direction of the wind, which tended mainly towards the west-northwest of the volcano.Servicio Geologico Columbiano, informed that from August 8, 2020 at 00:50 (local time), there was a significant increase in the volcano- seismic activity. tectonic, associated with the fracturing of rocks around the volcanic building. The seismic activity was located in the West-South-West sector at an average distance of 6.0 km from the Arenas crater. The recording of a volcano-tectonic earthquake that occurred at 7:04 a.m. (local time), at a depth of 4.1 km with a magnitude of 3.1 ML (local magnitude), was reported as felt by officials of the National Natural Park of Los Nevados. On July 30 at 6:36 a.m. local time, the SGC recorded a seismic signal related to internal fluid movements of the Nevado del Ruiz, and associated with a small emission of gas and ash at a maximum of 560 meters above the summit of the volcano. Ashes were reported in Malteria, Palermo and La Enea (sectors of Manizales). The level of activity remains in Amarillo, as it continues to exhibit instability and further emissions of gas and ash could occur. As of the 16th of June, SGC reported that the volcano has continued to exhibit behavioral instability in the past week. The SGC also reported an increase in seismicity in relation to rock fracturing, the occurrence of several episodes of the drumbeat type, and an increase in the number of events related to the dynamics of internal fluids and their energy. Small gas and ash emissions were noted, with dispersion towards the WNW; the plumes have reached max. 1.000 meters above the summit. No noticeable change in surface deformation. The activity level remains at Amarillo / 3. Servicio Geologico Colombiano's (SGC) Observatorio Vulcanologico y Sismologico de Manizales reported that during 27 May-2 June seismicity at Nevado del Ruiz was at similar levels to the week before, with signals dominated by periods of continuous volcanic tremor, tremor pulses, long-period, and very-long-period earthquakes. Some of the earthquakes were associated with minor gas-and-ash emissions that drifted N and were recorded by the webcam. The highest gas-and-steam plume rose about 1.3 km above the summit, recorded on 29 May. The Alert Level remained at 3 (Yellow; the second lowest level on a four-color scale). On 28 April Servicio Geologico Colombiano's (SGC) Observatorio Vulcanologico y Sismologico de Manizales reported that small ash-and-gas emissions from Nevado del Ruiz were periodically visible in webcam images and observed by Parque Nacional Natural Los Nevados officials during the previous week. These emissions drifted WSW and NW. A gas-and-steam plume rose 1.2 km above the crater rim on 21 April. The Alert Level remained at 3 (Yellow; the second lowest level on a four-color scale).Nevado del Ruiz is a broad, glacier-covered volcano in central Colombia that covers >200 sq km. Three major edifices, composed of andesitic and dacitic lavas and andesitic pyroclastics, have been constructed since the beginning of the Pleistocene. The modern cone consists of a broad cluster of lava domes built within the summit caldera of an older Ruiz volcano. The 1-km-wide, 240-m-deep Arenas crater occupies the summit. Steep headwalls of massive landslides cut the flanks of Nevado del Ruiz. Melting of its summit icecap during historical eruptions, which date back to the 16th century, has resulted in devastating lahars, including one in 1985 that was South America's deadliest eruption. (GVN/GVP)**********************************************************************************************************************************************************************************************

PERU - Ubinas volcano

April 6th, 2021

nstituto Geofisico del Peruº (IGP) reported that during 29 March-4 April there were 11 volcano-tectonic earthquakes at Ubinas with magnitudes less than 1.8, and a few seismic signals indicated emissions. Sporadic steam-and-gas plumes rose as high as 200 m above the crater rim. On 5 April the Alert Level was lowered to Green (the lowest level on a four-color
scale).IGP reported that at 1659 on 31 December and at 1746 on 1 January low-volume lahars descended the Volcano mayo drainage on Ubinas's SE flank and damaged parts of the highway linking Arequipa, Querapi, Ubinas, and Huarina. The Alert Level remained at Yellow (the second lowest level on a four-color scale). IGP continues to record a slight increase in seismic activity at Ubinas during the analysis period from September 28th to October 4th.
Seismicity is characterized by 42 Volcano-Tectonic (VT) earthquakes with magnitudes less than M1.3, which would be associated with rock breaking processes. Likewise, 18 seismic signals were recorded which would be associated with the movement of volcanic fluids (gas, mainly water vapor), within them, 2 earthquakes of the tornillo type. Plumes of volcanic gas and water vapor reaching heights of up to 300 m above the summit of the volcano are recorded by remote monitoring, dispersed towards the eastern sector of the volcano. IGP reported that the volcano continued to record a slight increase in seismic activity between July 27 and August 2, 2020. The occurrence of 83 earthquakes with a magnitude less than M1.7 has been identified, events that would be associated with rock breaking processes that occur inside the volcano. On average, the occurrence of 12 earthquakes per day was recorded. Likewise, 18 seismic signals were recorded which would be associated with the movement of volcanic fluids (water vapor and gas), among them, 5 Screw type (tornillo) seismic signals which would be related to the increase in pressure inside the volcano. and which are considered to be seismic signals precursors of volcanic eruptions, Surveillance cameras recorded columns of gas (water vapor) that reached heights of up to 1000 m above the summit of the volcano. IGP reported that the activity continued to show a slight increase in its seismic activity between July 20 and July 26; twenty earthquakes of magnitudes less than M1.5, associated with rock breaking processes that occur inside the volcano have been recorded; similarly, 6 seismic signals were recorded which would be associated with the movements of volcanic fluids (water vapor and gas); Within these, 2 tornillo-type events were identified which would be linked to the increase in the internal pressure of the volcano. No seismic activity linked to the rise of magma was observed. Surveillance cameras recorded columns of gas and water vapor reaching heights of up to 700 m above the summit of the volcano, dispersed towards the southeastern sector of the volcano. IGP reported that a slight increase in seismic activity occurred, for the period from 15 to 21 June, with 61 earthquakes of magnitudes below M1.7, which are associated with processes of rupture of the rocks inside the volcano. Similarly, 7 seismic signals were recorded associated with the movement of volcanic fluids (water vapor and gas).Slight plumes of gas and water vapor have been observed reaching heights up to 1000 m above the summit of the volcano, scattered towards the northeast and southeast sectors of the volcano. IGP reported that between June 13 and 14, 2020, tthere were the occurrence of 9 earthquakes of magnitude less than M1.9, located 4 km south of the crater and 2.5 km from depth, associated with rock rupture processes in the volcano. Similarly, a seismic signal was recorded which would be associated with the movement of volcanic fluids (water vapor and gas). Surveillance cameras installed in the Ubinas recorded plumes of gas and water vapor that reached up to 700 m above the summit of the volcano, scattered emissions to the southeast sections of the volcano. During 11-18 May the number of seismic events at Ubinas totaled 54 with volcano-tectonic (VT) signals being the most numerous. Sporadic emissions of gas and steam were recorded by the webcam rising to heights less than 300 m above the summit. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public were warned to stay outside of a 10-km radius. As of the 16th of march, IGP reported that the eruptive activity of the Ubinas volcano remains at low levels. Sporadic emissions of bluish gases and water vapor were recorded. MIROVA satellite surveillance did not record any thermal anomalies.The IGP recommended reducing the level of volcanic alert from orange to yellow. IGP reported that the eruptive activity between March 2 and 8, remained at low levels. To date, the record of earthquakes that would be associated with the rise of magma to the surface is weak. In addition, there are sporadic emissions of bluish gases (of magmatic origin) and water vapor. According to this scenario, the possibility of volcanic explosions and / or low ash emissions remains low. IGP reported that the eruptive activity of the Ubinas volcano remained at low levels. In early January, the energy of earthquakes which would be associated with the rise of magma on the surface has considerably decreased. There are weak and sporadic emissions of bluish gases (of magmatic origin) and water vapor, observed through surveillance cameras. Previously in 2019 IGP reported that the eruptive activity of the Ubinas volcano remained low. From 18th to 24th of November earthquake energy associated with rising magma at the surface has decreased. In addition, there was low and sporadic bluish gas (magmatic) and water vapor emissions observed by surveillance cameras. According to this scenario, it is unlikely that volcanic explosions and / or ash emissions will occur. The alert level remains at orange. IGP reported that the eruptive activity of the Ubinas volcano remained low during the period from 11 to 17 November 2019. To date, earthquake energy associated with rising magma at the surface has decreased. The IGP recorded and analyzed a total of 480 seismic events associated with the eruptive process of the Ubinas volcano, with predominant seismicity of the volcano-tectonic (VT) type, related to the fracturing of rocks in the interior. of the volcano. The seismic signals that would be related to the rise of magma (hybrid type) have decreased both in number of events (12 earthquakes daily) and energy generated. In addition, there has been no volcanic explosion since September 12th.Plumes of blue (magmatic) gas and water vapor retain heights less than 500 m above the summit. The monitoring of the deformation of the volcanic structure does not present anomalies. MIROVA satellite monitoring did not record thermal anomalies in the volcano. IGP reported that during the period from 7th to 13th of October, the eruptive activity remained light, and characterized by magmatic gas emissions and steam at less than 1,000 meters above the summit. At the seismicity level, 3533 earthquakes were recorded in relation to the eruptive process, with a predominance of VT earthquakes of M <2.1. No significant signs at the deformation level, and three small thermal anomalies are reported by Mirova. During the period from 16 to 22 September, the IGP recorded and analyzed a total of 4.356 seismic events, with a predominant volcano-tectonic (VT) type seismicity with an average value of 567 events per day, all of a magnitude less than M2.5. Seismic signals that would be related to the rise of the magma (hybrid type) were also recorded, at the rate of 119 events per day.During 10-15 September the number of seismic events at Ubinas totaled 4,093, with volcano-tectonic (VT) signals being the most numerous, averaging 572 events per day, and all having magnitudes under M 2.5. Hybrid events averaged 299 events per day. Continuous emissions of blueish gas and water vapor were recorded by the webcam rising to heights less than 1.5 km above the summit. Two thermal anomalies were recorded by the MIROVA system. An explosion at 0725 on 12 September produced a gas-and-ash plume that rose 1.5 km and affected several districts S and SE in the Moquegua region. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public were warned to stay outside of a 10-km radius. IGP reported that during 3-9 September three volcanic explosions were detected at Ubinas, all producing eruption plumes that rose to heights less than 2.5 km above the crater rim. The largest, and first, was recorded at 1358 on 3 September and produced significant amounts of ash and gas, affecting areas to the S and SE. After the explosions gas-and-steam plumes rose as high as 1 km. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public were warned to stay outside of a 10-km radius. IG reported that the volcano experienced an explosion on September 3 at 13:58 local, accompanied by an ash plume of 5,500 meters above the crater, then dispersed to the south and southeast in the district of Ubinas. IG reported that during the past week the seismic activity was slightly increased with an average of 118 to 225 episodes per day, with a weekly total of 2828 earthquakes. No explosions were recorded; only a moderate emission of ash is reported on September 1 at 9:45 pm, associated with a tremor signal; On the other hand, the emissions of gas and steam are continuous and reach 1,000 meters above the summit. Three thermal anomalies were reported by Mirova attesting to the proximity of the magma to the surface. Following a few weeks of calm, new ash emissions occurred on August 26 at 10:30, and few later a phreatic activity occurred generating a plume that reached 1,600 meters above the crater, then dispersed to a north and northwest sector (San Juan de Tarucani district). Continuous ash emissions on 27 August were recorded by satellite and webcam images drifting S and SW. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public were warned to stay outside of a 15-km radius. As of the 23rd of August, IGP reported that the eruptive process continued. A decrease in seismic activity related to the rise of magma was recorded, but the satellite images indicate the presence of a hot magmatic body close to the surface, and emissions of bluish gas (magmatic gas) and steam vapor. water were observed. IGP reported that during 13-19 August blue-colored gas plumes from Ubinas rose to heights of less than 1.5 km above the base of the crater. Seven thermal anomalies were recorded by the MIROVA system. The number of seismic events was 1,716 (all under M 2.4), a decrease in the total number recorded during the previous week. The Alert Level remained at Orange (the second highest level on a four-color scale) and the public were warned to stay outside of a 15-km radius. As of the 14th of August the Geophysical Institute of Peru (IGP) reported that the Ubinas volcano continued its eruptive process. Bluish gas (magmatic gas) and water vapor emissions observed by surveillance cameras continue to be recorded. Satellites detected thermal anomalies which indicate the proximity of the magma to the surface of the crater. As of the 28th of July satellite images by visible infrared radiometers (VIIRS), thermal anomalies observed on the edges of the Ubinas volcano crater corresponding to the presence of a body of lava / lava plug about 180 m. diameter at the base of the crater, which would prevent the emission of gas and ash. At the seismicity level, during the 7-day period, 2,295 earthquakes with a magnitude of less than 2 were recorded, including a percentage related to the rise and movements of fluids. IGP reported a total of 1,522 seismic events between July 20th and 24th, all of a magnitude below 2.2. During the analyzed period, an increase in seismic signals in relation to the rise of the magma (LP & hybrids) causes fear of explosive activity in terms of hours or days; it should be noted that more than 35 hours have passed since the last explosion. Thermic anomalies remain moderate to low, between 11 and 6 MW. Updated information on Ubinas' activity on July 23rd at 8pm. Peruvian autorities and INGEMMET reported that anomalies in the various geophysical parameters are associated with the rise of magma and the increase of seismic energy, LP and hybride, similar to the scenario that preceded the 22 July explosion at 23:25.Due to rainfall in the volcano area, lahars are possible. Ingemmet recommends to the populations of the villages of Querapi, Ubinas, Escacha, Huatahua, Tonohaya, Sacohaya, and San Miguel, to evacuate immediately, before a possible increase of the volcanic activity. IGP reported that new ash emissions occurred between 500 and 1.500 m., during the day of July 22, scattered to the southeast.An explosion on July 22 around 11:25 pm projected incandescent materials. The ashes spread over more than 10 km. to the villages of Ubinas, Lloque and Chojata districts.IGP reported that ash emissions continued to Ubinas on July 21, reaching about 500 meters above the crater, with scattering in a southeast and east sector of the volcano.The I.G.Peru does not notice deformation and probably a continuation of the eruptive process at moderate level. The orange alert level is maintained, moderate explosions can occur, accompanied by consequent emissions of ashes.Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread Plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions.

PERU - Sabancaya volcano

September 15th, 2021

During the week of September 6 to 12, the eruptive activity remained at a moderate level, with an average of 31 explosions per day, accompanied by plumes of gas and ash up to 4,000 meters above the summit.The IGP recorded and analyzed 1,326 earthquakes of volcanic origin, associated with the circulation of internal magmatic fluids. The VT earthquakes occurred mainly to the north and north-east of the volcano, with a magnitude between M2.5 and M3.5.The deformation does not show any significant anomalies. Six thermal anomalies were detected by Mirova, with a max. of 56 MW, associated with the presence of a lava body on the surface of the crater. IGP reported that during the week of August 23-30, Sabancaya maintained moderate-level activity, with an average of 36 explosions per day, accompanied by ash and gas plumes reaching 3,500 m. above the summit.I.G.P. recorded and analyzed 1,198 earthquakes of volcanic origin, associated with the circulation of magmatic fluids.No significant deformation anomalies.Mirova detected 10 thermal anomalies, with a max. of 27 MW VRP, associated with the presence of a surface lava body in the crater.The alert level is maintained in Naranja, with an inaccessible area of 12 km in radius. IGP reported that between August 16 and 22, the eruptive activity remained at moderate levels, with an average of 33 daily explosions, accompanied by plumes of ash and gas reaching up to 2,900 m. above the summit. During the week, 822 earthquakes of volcanic origin associated with the circulation of internal magmatic fluids were detected and analyzed. VT earthquakes, linked to rock fracturing, mainly concern a large northern sector, with magnitudes from 2.5 to 3.3. No significant deformation anomalies. Six thermal anomalies, of VRP max. of 9 MW, are associated with the presence of a lava body in the crater. The volcanic alert level remains at Naranja, with an inaccessible area of ​​12 km radius. IGP reported that activity remained moderate between August 9 and 15, 2021, with an average of 29 explosions per day, accompanied by plumes of gas and ash up to 3,000 meters above the summit. During this week, I.G. Peru detected and analyzed 826 earthquakes of volcanic origin linked to the circulation of internal magmatic fluids. The VT earthquakes remain localized to the north and northwest of the volcano. The deformation does not present any significant anomalies. Four thermal anomalies, with a max. de11 MW were identified by Mirova, associated with the presence of a surface lava body in the crater. IGP reported that during the week of August 2-8, Sabancaya maintained moderate levels of activity, averaging 51 explosions per day, accompanied by plumes of gas and ash reaching 2,300 meters above the summit. During this period, IGPeru detected and analyzed 1,229 volcanic earthquakes associated with the circulation of magmatic fluids, and VT earthquakes, linked to rock fracturing, from M2.4 to 3.5, located mainly in the north and northwest of the volcano. The deformation does not show any significant anomaly. Five thermal anomalies were identified by Mirova, with a max. of VRP 7MW. The level of the volcanic alert remains in Naranja, with a prohibited zone of 12 km in radius around the crater. IGP reported that the volcano maintained moderate volcanic activity between July 26 and August 1, with an average of 54 explosions per day, accompanied by ash plumes reaching up to 2,000 meters above the summit. I.G.P. detected and analyzed 1,170 earthquakes of volcanic origin associated with the circulation of internal magmatic fluids. During the same period, VT earthquakes associated with rock fracturing, of magnitudes between 2.7 and 3.9, occurred mainly in the north and southwest areas. IGP reported that the eruptive activity remained at moderate levels from July 19 to 25, 2021, an average of 58 daily explosions, accompanied by plumes of ash and gas up to 2,300 m above the summit of the volcano.IGP reported that the week of July 12 to 18, 2021, was characterized, like the previous week of a moderate level of activity, with an average of 100 volcanic explosions per day, accompanied by plumes of ash up to 2,000 meters above Summit. For the week 1.124 volcanic earthquakes occurred associated with the circulation of internal magmatic fluids. Volcano-tectonic earthquakes, in connection with the fracturing of rocks occur in an area north of the volcano, from M 1.8 to M 3.1. According to IGPeru, the eruptive activity of Sabancaya remained at moderate levels during the week of June 28 to July 4, 2021. An average of 91 daily explosions were observed, accompanied by plumes of gas and ash reaching up to 3,000 meters above the summit. During this week, 1,103 volcanic earthquakes associated with the circulation of internal fluids were analyzed; VT earthquakes, related to the fracturing of rocks, occurred mainly to the northwest and northeast of the volcano, of magnitude between 1.9 and 3.6. No significant variations in deformation. IGP reported that activity of Sabancaya remained at a moderate level during the week of 21-27 June 2021, with an average of 80 daily explosions, accompanied by plumes of ash and gas reaching up to 3,000 metres above the summit.IGP reported that between June 14 and 20, activity in Sabancaya, Peru, remained at a moderate level, with an average of 80 explosions per day, accompanied by ash plumes up to 2,300 meters above the summit. During the period analyzed, I.G. Peru detected 1,026 earthquakes of volcanic origin associated with the circulation of internal magmatic fluids. Volcano-tectonic earthquakes, from M 1.8 to 3.5, occurred NE and NW of the volcano. IGP reported that week of June 7 to 13 was characterized by moderate activity in Sabancaya, with an average of 79 daily explosions, accompanied by ash plumes up to 2,000 meters above the summit. During the period, 1070 earthquakes of volcanic origin occurred associated with the circulation of internal magmatic fluids. VT earthquakes, from M 2.0 to 3.5, occurred over an eastern sector. The institute does not report any significant deformation anomalies; it signals 11 thermal anomalies, with a max. of 22 MW, associated with the presence of a lava body on the surface in the crater. IGP reported that during the first week of June in Peru, the Sabancaya maintained itself at moderate levels, with an average of 96 explosions per day, accompanied by plumes rising up to 4,000 meters above the summit. At the same time 716 volcanic earthquakes were recorded related to the circulation of internal magmatic fluids. IGP reported that Sabancaya maintained moderate activity during the week of May 24 to 30, 2021. An average of 90 explosions is observed daily, which are accompanied by plumes of ash and gas up to 2,500 meters above the summit. During this period, I.G. Peru detected 707 earthquakes of volcanic origin, associated with the circulation of magmatic fluids. The VT earthquakes, in connection with the fracturing of rocks, mainly concern the northeast and the east of the volcano. No significant deformation anomalies, and three thermal anomalies of VRP max. of 14 MW, associated with the presence of a surface lava body in the crater. The volcanic alert level remains at Naranja, with a 12 km radius no-go zone. IGP reported that between  17 and 23 May 2021, Sabancaya's activity remained at moderate levels, with an average of 78 explosions per day, accompanied by plumes reaching 3,200 meters above the summit. During this period, I.G. Peru recorded 674 earthquakes of volcanic origin, associated with the circulation of magmatic fluids. Volcano-tectonic earthquakes, linked to the fragmentation of rocks, remain confined mainly to the north and northeast of the volcano. The other parameters show no significant changes. The volcanic alert level remains orange, with an inaccessible area of ​​12 km in radius. IGP reported a daily average of 37 explosions at Sabancaya during 10-16 May. Gas-and-ash plumes rose as high as 3.5 km above the summit and drifted S, SE, E, and NE. Ashfall was reported in the district of Chivay (NE), in the area of Achacota. Eight thermal anomalies originating from the lava dome in the summit crater were identified in satellite data. Minor inflation continued to be detected near Hualca Hualca (4 km N). The Alert Level remained at Orange (the second highest level on a four-color scale) and the public were warned to stay outside of a 12-km radius.During the period from May 3 to 9, 2021, the Sabancaya presented a moderate level activity, with an average of 66 daily explosions, accompanied by plumes of ash and gas up to 2,500 meters above the summit.I.G.Peru reported that a moderate level of activity occurred for the period from April 26 to May 2, 2021. It is characterized by an average of 91 daily explosions, accompanied by plumes of gas and ash reaching 2,300 meters above Summit. During the period, 1,703 earthquakes of volcanic origin associated with the circulation of internal fluids. VT earthquakes, related to rock fracturing, are detected mainly to the east and northwest of the volcano, with a magnitude between 1.4 and 2.5. At the deformation level, no significant anomalies, apart from a slight inflation in the northern sector. IG reported a high level of activity at Sangay during 13-20 April. Seismicity was characterized by daily explosions, long-period earthquakes, lahar events, and signals indicating emissions. Weather clouds and rain often prevented visual observations of the volcano, though based on the Washington VAAC and webcam images, ash plumes were visible during 13-14 and 17-20 April rising 600-2,400 m above the summit and drifting mainly N, NW, and W. The seismic network occasionally recorded lahar signals, especially during 14-16 April. Ashfall was reported in Chimborazo (W) and Guamote (40 km WNW) on 17 April, and crater incandescence was visible through the night of 19-20 April. IGP reported that between April 12 and April 18, 2021, Sabancaya's activity remained at moderate levels, with an average of 91 explosions per day, accompanied by plumes of ash and gas up to 2,300 meters above the summit. Seismicity is characterized by 1,732 earthquakes of volcanic origin, associated with the internal circulation of magmatic fluids. Volcano-tectonic earthquakes, in connection with the fragmentation of rocks, occurred in a north-west and east sector, of magnitude between 1.6 and 3.9. According to the I.G.Peru report, the activity of Sabancaya remained at a moderate level between March 22nd and 29th, 2021, with an average of 90 explosions per day, accompanied by plumes of ash and gas reaching 2,500 meters above. Summit. The ashes scattered over a northern and western sector.IGP reported that between March 8 and 14, the eruptive activity of  Sabancaya volcano remained at moderate levels, with the recording of an average of 88 daily explosions, accompanied by plumes of ash and gas up to 2.5 km altitude above the summit of the volcano and their subsequent dispersion. The IGP recorded and analyzed the occurrence of 1980 earthquakes of volcanic origin, associated with the circulation of magmatic fluids within the volcano. During this period, Volcano-Tectonic (VT) earthquakes, associated with rock fractures, were located mainly in the Northwest and West of Sabancaya and presented magnitudes between M2.4 and M3.6. IGP reported that activity between March 1 and 7 was maintained at a moderate level, with an average of 85 explosions per day, accompanied by plumes of ash and gas up to 2,000 meters above the summit. During this period, I.G. Peru recorded 1,867 earthquakes of volcanic origin, associated with the circulation of internal fluids. The VT earthquakes, related to the fracturing of rocks, occurred mainly to the southeast and northeast of the volcano, of magnitude between 2.1 and 2.6. The slight inflation of the Hualca Hualca volcano, northern sector, is still observed. IGP reported that eruptive activity of Sabancaya between February 22 and 28 remains at moderate levels, with an average of 91 daily explosions, and the observation of plumes of ash and gas up to 2,000 meters above the summit. During this period, I.G. Peru recorded 1977 earthquakes of volcanic origin, associated with the circulation of internal fluids. VT earthquakes, of magnitude between 1.9 and 2.8, occur mainly north of the volcano. The deformations do not present any significant anomalies, except for slight inflation in the north. The satellites did not identify any thermal anomaly. IGP reported that between February 15 and 21 the activity of Sabancaya remained at a moderate level, with an average of 71 explosions per day and the observation of ash plumes up to 3; 200 meters above the summit. During this period, 1,984 earthquakes of volcanic origin associated with the circulation of magmatic fluids were recorded, VT earthquakes linked to the fracturing of rocks, of magnitude between 2.2 and 3.5, occurred in the north- west and west of the volcano. The deformation does not present any significant anomalies; despite a slight inflation of the northern sector (Hualca Hualca volcano). IGP reported that eruptive activity was maintained between February 8 and 14, 2021 at moderate levels, with an average of 76 daily explosions, accompanied by plumes of gas and ash up to 3,000 meters above the summit, with dispersal in an extended western sector.IGP reported that between February 1 and 7, 2021, the eruptive activity was maintained at moderate levels, with an average of 45 daily explosions, and the observation of ash and gas plumes up to 3,000 meters high. above the summit..Sabancaya, located on the saddle between 6288-m-high Ampato and 6025-m-high Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three volcanoes, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. Both Nevado Ampato and Nevado Sabancaya are only slightly affected by glacial erosion and consist of a series of lava domes aligned along a NW-SW trend. The name of 5967-m-high Sabancaya (meaning "tongue of fire" in the Quechua Indian language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750. (GVN/GVP)

PERU - Misti volcano

March 14th, 2020

A lahar was reported by the Instituto Geofisico this March 13th, 2020 at 4:30 p.m. on the southeast sector of the El Misti volcano; of moderate volume, it lasted about 15 minutes and borrowed the southeast quebradas, in the districts of Chiguata and Paucarpata. Previous data 2014 - Instituto Geofisico del Peru (IGP) reported that, during the last 12 months, seismicity at El Misti was dominated by volcano-tectonic (VT) earthquakes. Two seismic swarms (more than 100 events per day) occurred during the last three months, on 19 May and 3 June. An increase in tremor was noted in April, although the total duration did not exceed 10 minutes and was generally low-amplitude. Long-period seismicity was not significant. In the last 15 days, seismicity increased slightly and tremor was recorded daily. Instituto Geofísico del Perú (IGP) reported that seismicity at El Misti increased during January, and a seismic swarm consisting of 119 volcano-tectonic events was detected during 14-15 January. Despite the increase, activity remained at a low level. El Misti, Peru's most well-known volcano, is a symmetrical andesitic stratovolcano with nested summit craters that towers above the city of Arequipa. The modern symmetrical cone, constructed within a small 1.5 x 2 km wide summit caldera that formed between about 13,700 and 11,300 years ago, caps older Pleistocene volcanoes that underwent caldera collapse about 50,000 years ago. A large scoria cone has grown with the 830-m-wide outer summit crater of El Misti. At least 20 tephra-fall deposits and numerous pyroclastic-flow deposits have been documented during the past 50,000 years, including a pyroclastic flow that traveled 12 km to the south about 2000 years ago. El Misti's most recent activity has been dominantly pyroclastic, and strong winds have formed a parabolic dune field of volcanic ash extending up to 20 km downwind. An eruption in the 15th century affected Inca inhabitants living near the volcano. Some reports of historical eruptions may represent in creased fumarolic activity. Source: Instituto Geofísico del Perú (IGP) and (GVN/GVP)

******************************************************************************************************************************************************************************************************

CHILE-ARGENTINA - Copahue volcano

August 10th, 2021

SERNAGEOMIN reported that the surface activity in the Copahue volcano on August 9, 2021 was characterized by water vapor and gas emissions. In the evening, incandescence is visible in the El Agrio crater, as are pulsatile gas emissions. On 08/09/21, TROPOMI detected a strong SO2 signal at a distance of 5.9 km from the Copahue, with 68.25 DU of SO2 at an altitude of about 2 km. Estimated mass within a radius of 300 km: 15.3 kts. SERNAGEOMIN and SEGEMAR reported increased activity at Copahue, starting with minor and sporadic increases in tremors first detected in late May. From June 30 to July 2, the tremors increased and the volume of water in the crater lake decreased significantly. Coincidentally, the crater's glow was visible in nighttime webcam views, and gas emissions increased. Residents reported smells of volcanic gas. The increase in gas and vapor emissions between 11:00 a.m. and 2:00 p.m. on July 2 contained minor amounts of ash which left visible deposits on the SE and ENE flanks. The alert level remained at green (the lowest level on a four-color scale). SERNAGEOMIN reported that at 1:56 a.m. on Thursday, February 18, a VT earthquake associated with rock fracturing, magnitude 3.4 (Ml), was recorded at a depth of 5.4 kilometers near the Copahue volcano, in the Biobío region. The alert level remains " Verde ". As of the 11th of January, SERNAGEOMIN reported that surface activity of the volcano results in emissions of gas and particulate material of power and dispersion within the standards of the current level. The deformation measurements do not show any noticeable changes in relation to the internal activity of the volcanic system. The sulfur dioxide emissions do not present an anomaly. Two thermal anomalies were noted on January 10, 2021 at 11:45 a.m. / VRP 11MW and at 3:55 p.m. / VRP 18MW, by Mirova. The alert level remains green. Previous news 2020 - SERNAGEOMIN reported that during 1-15 November activity at Copahue decreased to low levels. Passive gas emissions generally rose 200-300 m above the vent, though on 15 November they rose 760 m. The report also noted no changes to deformation, low levels of sulfur dioxide emissions, low seismicity, partial restoration of the crater lake, and the absence of nighttime crater incandescence since late October. The Alert Level was lowered to Green (the lowest level on a four-color scale) on 15 November. ONEMI cancelled the Yellow Alert for the Alto Biobio municipality, but declared a Preventive Early Warning ensuring continued surveillance of the area and coordination within the Civil Protection System. As of the 2nd of November, SERNAGEOMIN reported that the activity of the volcano continues at low levels characterized by continuing ash emissions from the crater. Emissions of steam, gases with minor ash content occurred and reached approx. 10,000 ft (3,048 m) altitude. Seismicity continues at low levels. SERNAGEOMIN reported that on October 23, a plume of gas, lightly loaded with ash, blown by the winds rose above the village and Lake Caviahue.According to Sernageomin, the seismic activity of the Copahue remains at a low level, but there are transient increases in the amplitude of the tremor, in relation to the emissions of particulate materials, suggesting the interaction between the magma and the superficial hydrothermal system. On the satellite images, a large area of ​​ash deposits was visible estimated between 6-7 km. In diameter, mainly in the proximal area of ​​the crater. As of the 28th of September, SERNAGEOMIN reported that the volcano continues its activity of gas emissions occasionally laden with ash. Night incandescence and these emissions testify to an instability of the volcanic and hydrothermal system. SERNAGEOMIN reported that the activity remained characterized by continuous emissions of gray ash. As of August 5th, the ash plume rises above the summit, and the snows are colored by the fallout of ash and particles. The seismic activity shows low levels, with occasional variations in the amplitude of the continuous tremor. The technical alert remains in Amarilla / change in behavior of volcanic activity; the possible assignment area is set at 1,000 meters radius around the crater. SERNAGEOMIN reported that the activity of Copahue remained essentially unchanged, and characterized by continuous emissions of gray ash. On August 31, the ash plume is observed 500 meters above the summit, and the snow is colored by the fallout of ash and particles. The seismic activity shows low levels, with occasional variations in the amplitude of the continuous tremor. SERNAGEMIN reported that the monitoring stations recorded on August 6 at 4:25 am local a change in activity, marked by the emission of more colored gas, due to the particle load, accompanied by a "subtle" increase in the tremor and a displacement. reduced. The plume reached a height of max. 1,000 meters above the point of emission and dispersed in a northeastern direction. The emission lasted until 6:50 am local, then decreased to return to a usual white degassing. SERNAGEOMIN raised the technical alert level of Copahue in Amarilla on July 17 at 3.30 p.m. local time. During the previous months, the seismicity was marked by numerous VLP earthquakes, in relation with the rise of magma to more superficial levels; in addition, in recent days, signs have been observed on the surface, with the emission of particulate materials associated with a column of gas from the active crater, and incandescence. The satellite images indicate a decrease in the volume of the crater lake ... all these signs testify to my presence of a volume of magma at a superficial level. An area of ​​1,000 meters in radius around the crater is considered as a possible assignment area. From 1st to 16th of July, the volcano presented a low level seismic activity, but with an increase in the tremor, associated with the emission of particulate materials, and gas; These are signs of an instability of the volcanic system, associated with that of the hydrothermal system and a drop in the level of the crater lake; The technical alert is passed to amarilla, and the possible assignment area to 1 km radius around the crater. As of the 8th of July, SERNAGEOMIN reported that conditions at Copahue had returned to normal levels and seismicity was low. The Alert Level was lowered to Green (second lowest level on a four-color scale) on 7 July. SERNAGEOMIN reported that over the past few days, Copahue's volcanic activity has evolved to show visible signs on the surface. It is important to mention that very low frequency (very long period VLP) seismicity has been recorded in the previous months, generally linked to the rise of the magmatic material to more superficial levels. Likewise, on May 20, a series of volcanic seismological events located south-southwest near the volcanic building were recorded. On June 16, there was an increase in energy from the seismic tremor with subsequent stabilization and decrease in the following hours. At the same time as this decrease, the incandescence and the emission of particles were detected from cameras installed by OVDAS. The latest sulfur dioxide recordings obtained by the equipment installed for its detection indicate average flows of 592 tonnes / day for June 15, considered as usual values ​​for this activity. On the other hand, the monitoring stations which measure the deformation in the volcanic sectors do not show changes related to this activity. In addition, the images available on the Planet satellite platform indicate a decrease in the volume of the lake housed in the active crater. In summary, the changes in seismological behavior, the anomalies in the surface assessments and the decrease in the volume of the crater lake suggest the presence of a volume of magma at superficial levels. Volcan Copahue is an elongated composite cone constructed along the Chile-Argentina border within the 6.5 x 8.5 km wide Trapa-Trapa caldera that formed between 0.6 and 0.4 million years ago near the NW margin of the 20 x 15 km Pliocene Caviahue (Del Agrio) caldera. The eastern summit crater, part of a 2-km-long, ENE-WSW line of nine craters, contains a briny, acidic 300-m-wide crater lake (also referred to as El Agrio or Del Agrio) and displays intense fumarolic activity. Acidic hot springs occur below the eastern outlet of the crater lake, contributing to the acidity of the Rio Agrio, and another geothermal zone is located within Caviahue caldera about 7 km NE of the summit. Infrequent mild-to-moderate explosive eruptions have been recorded at Copahue since the 18th century. Twentieth-century eruptions from the crater lake have ejected pyroclastic rocks and chilled liquid sulfur fragments. (GVN/GVP)

CHILE - Puyehue-Cordon Caulle

May 3rd, 2020

SERNAGEOMIN reported that on May 2nd, 2020 at 7:33 p.m. local to the Puyehue-Cordon Caulle volcanic complex a volcanotectonic earthquake of M loc. 3.0 / depth 3.1 km, associated with the fragmentation of rocks. The technical alert remains unclear. The last period of activity dates back to June 2011 - April 2012, characterized by an VEI 5. OVDAS-SERNAGEOMIN reported that.on March 14, starting at 6:30 am local time, the monitoring stations of the Puyehue-Cordon Caulle volcanic complex recorded a swarm of 185 volcano-tectonic earthquakes, associated with rock fracturing, at 1,600 meters NNW from the emission center of 2011; the most energetic earthquake was Ml 2.2 at a depth of 4.3 km. No surface activity has been described by the Sernageomin and the technical alert level remains green.The Puyehue-Cordón Caulle volcanic complex (PCCVC) is a large NW-SE-trending late-Pleistocene to Holocene basaltic-to-rhyolitic transverse volcanic chain SE of Lago Ranco. The 1799-m-high Pleistocene Cordillera Nevada caldera lies at the NW end, separated from Puyehue stratovolcano at the SE end by the Cordón Caulle fissure complex. The Pleistocene Mencheca volcano with Holocene flank cones lies NE of Puyehue. The basaltic-to-rhyolitic Puyehue volcano is the most geochemically diverse of the PCCVC. The flat-topped, 2236-m-high volcano was constructed above a 5-km-wide caldera and is capped by a 2.4-km-wide Holocene summit caldera. Lava flows and domes of mostly rhyolitic composition are found on the E flank. Historical eruptions originally attributed to Puyehue, including major eruptions in 1921-22 and 1960, are now known to be from the Cordón Caulle rift zone. The Cordón Caulle geothermal area, occupying a 6 x 13 km wide volcano-tectonic depression, is the largest active geothermal area of the southern Andes volcanic zone. Latest eruption occurred in 2012. (SERNAGEOMIN)

CHILE- ARGENTINA border - Planchon-Peteroa volcano

March 8th, 2019

As of the 8th of March, SERNAGEOMIN reported that the cameras always showed a constant degassing of gray color, marked by a plume at a height of less than 2,000 meters, indicating the presence of particles, moving mainly towards the southwest.The seismicity of the last days was characterized by VT earthquakes, associated with the fracturing of rocks, and a large number of LP earthquakes, in relation with the dynamics of the internal fluids.The superficial activity of Peteroa suggests that we are dealing with an open system. Alert level remains at Amarillo / change in behavior of volcanic activity. SERNAGEOMIN surface activity has continued since the beginning of February. The gray plumes, with a maximum height around 2,000 meters above the crater are still observed this 23 February. The alert level remain Yellow. SERNAGEOMIN reported that the superficial activity of Peteroa has continued since the beginning of February. The gray plumes, with a maximum height around 2,000 meters above the crater shows with the presence of ash a volcanic system open in the superficial part of the volcano. On February 22, plumes, more or less laden with ashes, were observed throughout the day. SERNAGEOMIN reported that on 6th of February, the intense eruptive activity was still continuing, marked by a change of wind direction, which blows the ash plume to the northeast and the Vergara international pass, between Chile and Argentina. On the morning of February 3, Sernageomin recorded a continuous increase in the column of gas and particles at about 1,600 meters above the crater, dispersing to an eastern secto. An episode at 10:33 local, was associated with tremor and a low displacement. The energy of the seismic signal has been rising since February 1st. SERNAGEOMIN reported that on 1st February from 5 pm local time, the cameras recorded a steady and continuous increase in particulate matter emissions, with a column of 2,000 meters and a dispersion towards the east. This episode was accompanied by VLP earthquakes between 17 and 19h local, in connection with the injection of magma from a greater depth, and tremor.The increase in ash emissions and seismicity suggest an open system, and possible new minor eruptive episodes affecting the area of ​​active craters. The alert is maintained in yellow level. SERNAGEOMIN reported that on January 15 at 9h56 PM local an explosion accompanied by a greyish ash plume at about 600 meters, moving mainly northwest.In a previous bulletin, the Sernageomin specified that according to the observations and the recorded measurements, a new eruptive cycle of phreatomatic characteristics develops, following the possible contact of a magmatic body with a part of the hydrothermal system. which would facilitate the fragmentation of a minor volume of magma and the expansion of steam and the emission of ashes.The alert level remains in Amarilla. Previously, Observatorio Volcanologico de los Andes del Sur (OVDAS)-SERNAGEOMIN and ONEMI reported increased activity at Planchon-Peteroa beginning in the morning of 16 December. Low-intensity pulses of tremor were detected by the seismic network and associated with pulsating grayish gas emissions which rose no higher than 800 m above the vent rim. Webcams recorded crater incandescence during the night of 15-16 December. The Alert Level remained at Yellow (the middle level on a three-color scale) for the volcano, and ONEMI maintained Alert Level Yellow for the communities of Molina (66 WNW), Curica (68 km NW), Romeral (75 km NW), and Teno (68 km NW). The OVDAS / Sernageomin reports an explosive emission of ashes and gas this December 14 at 9:57 local to the complex Planchón Peteroa located on the border Chilio-Argentina, associated with a seismic signal LP and tremor, which remained after the emission .The gray plume rose to 800 meters before dispersing to the east. The alert level remains in Amarillo. Planchón-Peteroa is an elongated complex volcano along the Chile-Argentina border with several overlapping calderas. Activity began in the Pleistocene with construction of the basaltic-andesite to dacitic Volcán Azufre, followed by formation of basaltic and basaltic-andesite Volcán Planchón, 6 km to the north. About 11,500 years ago, much of Azufre and part of Planchón collapsed, forming the massive Río Teno debris avalanche, which traveled 95 km to reach Chile's Central Valley. Subsequently, Volcán Planchón II was formed. The youngest volcano, andesitic and basaltic-andesite Volcán Peteroa, consists of scattered vents between Azufre and Planchón. Peteroa has been active into historical time and contains a small steaming crater lake. Historical eruptions from the complex have been dominantly explosive, although lava flows were erupted in 1837 and 1937. (GVN/GVP)

CHILE - Nevado de Chillan

September 17th, 2021

From the photo-interpretation of a very high-resolution SkySat image dated September 15, 2021, the growth of an effusive body attributable to a dome-shaped morphology inside the Nicanor crater of chillan's Nevados complex is identified. Ellipsoidal in shape, it has a large axis of 40 m and a small axis of 27 m. It has an elongated shape in a northwest-southeast direction. From the analysis of the Sentinel 2 L2A satellite images of the same date, it is confirmed that it has abnormal thermal radiation. In terms of surface activity, the appearance of this new morphology is preceded by a considerable decrease in the extrusion rate of L5 and L6, disappearance of thermal anomalies that explain a decrease in the temperature of these lava flows, as well as the disappearance of nocturnal incandescence episodes during most of the first half of September.The RSAM of the continuous seismic signal, calculated every 6 hours, shows a gradual rise since yesterday, September 14, coinciding with a greater record of volcanic seismic signals, especially LP and tremor. SERNAGEOMIN reported that monitoring stations installed near the Nevados de Chillán volcanic complex, detected on August 12 two earthquakes associated with fluid dynamics inside the volcanic system (Long Period), respectively at 01:53 local time (05:53 UTC ) and at 03:28 local (07:28 UTC). The effusive-explosive eruption of Nevados de Chillan continues at unchanged moderate levels. Two lava flows remain active, L5 and L6, and continue to spread on the NE slopes. A new lava flow formation began to emerge from the summit vent on July 27 and continues to descend on the NE flanks adjacent to the already known L5 / L6 flows. An almost constant glow visible from the summit crater at night indicates the rise of a batch of magma. The volcano continues its intermittent moderate explosions from the summit vent. An ash plume rose 1,800 feet (560 m) above the summit and drifted northeast. SERNAGEOMIN reported that an earthquake occurred on 29th of July at 5:10 a.m. local, 4 earthquakes at 5:23 a.m. local, an earthquake at 8:33 a.m. local / 12:33 UTC which was accompanied by a plume at 780 meters above the point of emission, and another at 9:01 a.m. local . The alert level remains at amarilla. SERNAGEOMIN reported that on Tuesday July 20, at 4:38 p.m. local time (8:38 p.m. UTC), monitoring stations installed near the Nevados de Chillán volcanic complex recorded an earthquake associated with fluid dynamics (long period type) in the volcanic system. A plume of ash and gas was emitted up to 560 m above the point of emission. On July 21, a similar earthquake occurred, with the emission of a plume 300 m high. above the crater. SERNAGEOMIN reported that on Sunday, July 18 at 7:17 p.m. local time (11:17 UTC), the monitoring stations installed in the vicinity of the Nevados de Chillán volcanic complex recorded an earthquake associated with fluid dynamics in the volcanic system (Long Period). The explosive activity continues; a VAAC Buenos Aires advisory mentions a plume of ash and gas at an altitude of 4,300 meters moving north for 10 km. SERNAGEOMIN reported that the monitoring stations installed near the NevadosDeChillán CV recorded this Saturday, July 3, at 1:51 p.m., 2 explosive events associated with the dynamics of fluids inside the volcanic system (LP).SERNAGEOMIN reported continuing explosive and effusive activity at Nevados de Chillan's Nicanor Crater during 16 May-2 June, and increased sulfur dioxide emissions and thermal anomalies. Explosions partly destroyed the dome, generating ash plumes that rose as high as 1.4 km above the craterrim and pyroclastic flows that traveled as far as 1.1 km down the NE flank. Satellite images indicated that the L5 lava flow did not lengthen, remaining at 966 m, though the distal part of the flow widened. The L6 lava flow advanced at a rate of 1.16 m per hour to over 890 m long. The average temperature was 101 degrees Celsius with a maximum of 264 for L5 and an average of 121 degrees Celsius with a maximum of 293 for L6. A new lobate flow emerged just to the N of L6; measurements on 2 June indicated that the temperature of the flow was similar to that of L6. Data indicated that the lava dome in Nicanor Crater did not get larger. The average sulfur dioxide emission rate was 706 (± 216) tons/day, reaching a high value of 1,101 on 27 May. The number and intensity of thermal anomalies increased, and were notable on 20, 23, 25, 28, and 30 May, likely due to the active lava flows. The Alert Level remained at Yellow, the second lowest level on a four-color scale. ONEMI stated that Alert Level Yellow (the middle level on a three-color scale) remained in place for the communities of Pinto and Coihueco, noting that the public should stay at least 2 km away from the crater.SERNAGEOMIN reported that a series of explosions occurred at the Nevados de Chillan complex on May 2, 2021; they generated pyroclastic flows of collapse over 400 meters from the crater on the northeast flank and resulted in the partial destruction of the dome in the Nicanor crater. On May 5, the extrusion of a new lava flow / L6 is mentioned, which has advanced 100 meters from the edge of the crater on the northeast flank. The measurements made with the thermal camera show a temperature of 278 ° C. A new hot spot is measured in an area adjacent to the L5 lava front, at 307 ° C. This L5 flow on the north flank is fed by fresh material, and shows a emperature of 208 ° C. As of the 3rd of May, SERNAGEOMIN reported that activity was characterized by explosions and persistent ash emissions, very similar to what was observed during much of the 2016-2021 eruptive cycle. The observations come after Sernageomin released a series of Special Volcanic Activity Reports (REAVs) yesterday, representing a series of seismic events related to the movement of fluids in the system.SERNAGEOMIN reported that on 26th of March, explosive eruptive activity of Nevados de Chillan remained low, without much impact. It generates dense pyroclastic density currents of low incidence. The effusive activity is noticed by the continuous increase of the lava dome and the collapse deposits on the northeast side. The L5 flow, on the northern flank, advances at an average of 0.1m. / h.year at the front and now measures 925 meters from the edge of the Nicanor crater. Its temperature is 236 ° C.The largest stratovolcano, dominantly andesitic, 3212-m-high Cerro Blanco (Volcan Nevado), is located at the NW end of the group, and 3089-m-high Volcan Viejo (Volcan Chillan), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcan Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcan Viejo in altitude. The Volcan Arrau dome complex was constructed SE of Volcan Nuevo between 1973 and 1986, eventually exceeding its height by 20 m. (GVN/GVP)

Chile - Villarica

April 25th, 2021

SERNAGEOMIN reported that during 1-15 April gas-and-steam emissions with no or very small amounts of ash rose from Villarrica to heights less than 1.2 km above the crater rim. Crater incandescence was not visible at night and sulfur dioxide emissions were low. Observations from multiple sources suggested that the lava lake level was lower, decreasing the likelihood
that material ejected by minor explosions would reach beyond 100 m from the crater. The Alert Level was lowered to Green on 23 April, the lowest level on a four-color scale. ONEMI declared a Preventative Early Warning for the municipalities of Villarrica, Pucón (16 km N), Curarrehue, and the commune of Panguipulli, and the exclusion zone for the public of 100 m around the crater. SERNAGEOMIN reported that a dense white degassing at 300 - 500 m. rose above the summit crater on February 1st. The seismic parameters remain stable and at low levels. The origin of the phenomenon is fundamentally atmospheric.
The small lava pond in the summit crater, first observed in Nov last year, has remained essentially unchanged. POVI reported that during an overflight of Villarrica on 2 January scientists observed an incandescent vent at the bottom of the crater that had a solidified lava bridge connecting across a partially crusted-over top. The Alert Level remained at Yellow, the second lowest level on a four-color scale. ONEMI maintained an Alert Level Yellow (the middle level on a three-color scale) for the municipalities of Villarrica, Pucon (16 km N), Curarrehue, the commune of Panguipulli, and the exclusion zone for the public of 500 m around the crater. Previous news 2020 - SERNAGEOMIN reported that Minor ash emissions rose to low heights above the crater rim on 22 December. The Alert Level remained at Yellow, the second lowest level on a four-color scale. ONEMI maintained an Alert Level Yellow (the middle level on a three-color scale) for the municipalities of Villarrica, Pucon (16 km N), Curarrehue, the commune of Panguipulli, and the exclusion zone for the public of 500 m around the crater. SERNAGEOMIN reported that on December 16 several new ash emissions, occurred at 08:45, 11:48, 11:56,12:41. The Sernageomin also reported an LP earthquake on December 17 at 5:16 pm local time, accompanying an emission of particulate matter in the form of a plume rising to a maximum of 720 meters; and derivative ESE. SERNAGEOMIN-POVI reconnaissance overflight on December 9th showed that the lava lake of Villarica, about 10 to 15 meters in diameter, was semi-covered by a solidified floating crust. A very weak incandescence was visible, but only by infrared camera. Volcanic technical alert remains in Amarilla. SERNAGEOMIN recorded an LP earthquake, associated with a moderate explosion at the level of the crater of Villarica on December 5, 202 at 6:44 p.m. local time, accompanied by a plume of ash 160 meters high, drifting towards the SSE. Ash deposits are reported near the crater and in the direction of dispersion.SERNAGEOMIN-POVI reported that an explosion occurred on November 17 accompanied by a small plume of ash about thirty meters above the crater. During a reconnaissance overflight on November 15, observation showed that the bottom of the crater, at about 70-80 m deep, of the 4 active orifices documented on November 10, 3 have become passive and the 4th maintains a pit of lava. Glacier-clad Villarrica, one of Chile's most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks. (GVN/GVP)

CHILE - Laguna del Maule

March 23rd, 2021

SERNAGEOMIN reported that during 1-15 March the seismic network at Laguna del Maule recorded a total of 123 volcano-tectonic earthquakes. The largest event was a local M 2.4 located 8.2 km WSW of the lake, at a depth of 4.4 km. One tremor event was also recorded. Recent carbon dioxide emission measurements showed an upward trend and that the area of anomalous emissions had expanded. Deformation rates were higher than maximum averages. The Alert Level remained at Yellow, the second lowest level on a four-color scale. ONEMI maintained a Yellow Alert for San Clemente and recommended restricted access within a radius of 2 km from the center of elevated carbon dioxide emissions.As of the 22nd of February, SERNAGEOMIN reported that during the past two weeks at the Laguna del Maule Volcanic Complex, the Southern Andes Volcanological Observatory (OVDAS) has detected 533 volcano-tectonic (VT) seismic events, associated with a rock fracture within the volcanic system, and rates deformation of 2.3 cm / month, higher than the average since 2012. Therefore, SERNAGEOMIN decided to change the technical alert from green to YELLOW, which was reported in the volcanic activity report for the last fortnight. Moreover, it was observed that the type of VT events were persistent in time and increased in size. Its establishments are concentrated in the Las Nieblas sector, south of the lagoon, a place where carbon dioxide anomalies have been detected since 2019. Finally, a hazard zoning with a radius of 2 km is reported around the site of the CO2 anomaly, in which it is recommended not to access.Previous news 2020 - SERNAGEOMIN reported that 10 low-magnitude volcano-tectonic earthquakes were detected at the Laguna del Maule Volcanic Complex during 16-31 October; seismicity was low in the region where a swarm had occurred in June. Satellite data showed no deformation, surface changes, gas emissions, or thermal anomalies. On 6 November the Alert Level was lowered to Green, the lowest level on a four-color scale. ONEMI cancelled the Yellow Alert for San Clemente, but declared a “Preventive Early Warning ensuring continued surveillance of the area and coordination within the Civil Protection System. SERNAGEOMIN reported that during 1-15 September inflation continued to be detected at the Laguna del Maule Volcanic Complex, although at a lower rate of 0.7 cm per month which is below the 2 cm per month average for this year. Seismicity in the S sector was low in both number and magnitude of events. The Alert Level remained at Yellow, the second lowest color on a four-color scale, as activity remained above baselines. ONEMI recommended restricted access within a radius of 2 km from the emission center. SERNAGEOMIN reported that on July 7th seismicity remained high associated with earthquakes located east of the Laguna del Maule complex, in an area with a diameter of approximately 5 km near the intersection of two faults near Las Nieblas, and corresponded to high levels of carbon dioxide emissions. The alert level remained at Amarilla, along with a 2 km danger zone around the main caldera. SERNAGEOMIN through a special report of volcanic activity (REAV) reported the change of alert from GREEN to YELLOW in the volcanic complex of Laguna del Maule The above responds to the increase in volcano-tectonic (VT) type seismic activity, associated with rock fracturing, through seismic swarms on June 11, 13 and 15-16. These events were characterized by their small scale and by their location in the southwest of the lagoon (Las Nieblas sector) In addition, in this same area during the previous months, diffuse carbon dioxide (CO2) anomalies were detected through the ground. Therefore, due to the persistent presence of seismic swarms in the same area, added to the gas anomaly and the constant deformation that has characterized the volcanic complex over the past decade, it is considered to be at above its basic level.A potential allocation area is set at a radius of 2,000 meters around the passive carbon dioxide degassing center. The 15 x 25 km wide Laguna del Maule caldera contains a cluster of small stratovolcanoes, lava domes, and pyroclastic cones of Pleistocene-to-Holocene age. The caldera lies mostly on the Chilean side of the border, but partially extends into Argentina. Fourteen Pleistocene basaltic lava flows were erupted down the upper part of the Maule river valley. A cluster of Pleistocene cinder cones was constructed on the NW side of the Maule lake, which occupies part of the northern portion of the caldera. The latest activity produced an explosion crater on the E side of the lake and a series of Holocene rhyolitic lava domes and blocky lava flows that surround it. (GVN/GVP)

CHILE - Antillanca-Casablanca volcano group

March 12th, 2020

As of the 11th of March, SERNAGEOMIN announced today that a yellow technical alert has been declared for the Antillanca-Casablanca volcanic complex, in the Los Lagos region. The alert was generated after the detection on March 9 of a series of 73 seismic events located approximately 2.4 kilometers north-northwest of the Casablanca volcano, with a maximum magnitude of ML1.8. Other seismic events were detected respectively on January 31 and February 1 of MI 3.1-3.2 for the strongest west and northwest of the Casablanca volcano.The other parameters do not show significant variations.The Sernageomin specifies that the level of technical alert Amarilla corresponds to minor explosions or possible fumaroles.The Antillanca Group is a group of basalt to andesitic slag cones from the Upper Pleistocene to the Holocene, maars and small stratovolcanoes covering an area of ​​380 km2 SE of Lago Puyehue and NE of Lago Rupanco. The most prominent building is the Holocene stratovolcano of Casablanca, which has a truncated conical profile and produced major explosive eruptions about 2910 and 2260 years ago (radiocarbon dating).

CHILE - Chaiten volcano

April 4th, 2020

SERNAGEOMIN reported that on April 3 at 04.17 local time, an earthquake of local magnitude 2.8 located 3.2 km deep was recorded under the summit of the Chaitén volcano. The National Service of Geology and Mines has indicated that this earthquake is associated with rock fracturing and the dynamics of internal fluids (hybrid earthquake). The volcanic technical alert remains on "verde". The last period of activity of the Chaiten occurred between May 2, 2008 and May 31, 2011. This first historic eruption produced major explosive rhyolitic activity, numerous pyroclastic flows and lahars, and was followed by the installation of a dome complex which filled much of the caldera. Chaitén is a small, glacier-free caldera with a compound Holocene lava dome located 10 km NE of the town of Chaitén on the Gulf of Corcovado. Early work had identified only a single explosive eruption during the early Holocene prior to the major 2008 eruption, but later work has identified multiple explosive eruptions throughout the Holocene. A rhyolitic obsidian lava dome occupies much of the caldera floor. Obsidian cobbles from this dome found in the Blanco River are the source of prehistorical artifacts from archaeological sites along the Pacific coast as far as 400 km from the volcano to the N and S. The caldera is breached on the SW side by a river that drains to the bay of Chaitén. The first historical eruption, beginning in 2008, produced major rhyolitic explosive activity and growth of a lava dome that filled much of the caldera. (GVN/GVP)

***********************************************************************************************************************************************************************************************

Colima volcano (Mexico)

 

Japan - Suwanosejima volcano

September 5th, 2021

JMA reported that three explosions at Suwanosejima's Ontake Crater produced eruption plumes that rose as high as 4.8 km above the crater rim during 27 August-3 September. Large volcanic bombs were ejected 700 m from the crater. Crater incandescence was visible nightly and ashfall was often reported in Toshima village (4 km SSW). The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater.JMA reported that a new eruptive episode occurred at 9:22 p.m. on August 30, and the eruption plume rose 2,800 m above the crater rim. The volcanic ash drifted towards the southwest of the crater, and within an hour there was a fairly large amount of ash in the village of Toshima,Another eruptive episode occurred at 10:22 a.m. on August 31, and the plume rose 1,800 m above the crater rim. Volcanic ash was carried westward from the crater, and at 4:00 p.m. on the 31st, there was a small ashfall in Toshima Village, and Kagoshima Prefecture. JMA reported that a new eruption occurred at Suwanosejima (Mount Ontake Crater) at 12:31 p.m. on August 28, and smoke from the eruption rose 4,800 m above the crater rim. The ashes scattered north, and a large amount fell on the village of Toshima. An area 2 km north of the volcano is considered at risk. As of the 27th of August, JMA reported that volcanic activity continues at high levels. Moderate to strong vulcanian explosions are again in progress at the crater at the top of On-take volcano NE.Similar activity occurred in early August as a series of violent eruptions sent ash up to 3 km above sea level. A spectacular ash plume rising to 2,600 m. above the summit could be observed around 9:10 a.m. local time today and dispersed in a northwesterly direction, in accordance with the ash scattering advisory issued by VAAC Tokyo. Explosions generated pyroclastic bombs and blocks ejected up to 400 meters from the crater. An almost constant glow is visible at the summit at night, detected by surveillance cameras. JMA eported that explosions at Suwanosejima's Ontake crater were detected on 19, 20, and 21 August. The first explosion at 0137 on 19 August produced an ashJMA reportede that a strong eruptive episode occurred at Suwanosejima (Mitake crater), in the Ryukyu arc, at 1:37 a.m. on August 19, and the plume of the eruption rose 3,000 m above the edge of the crater, crossed by lightning. Volcanic ash was observed northeast of the crater and at 8 a.m. on the 19th there was a fairly large amount of ash in the village of Toshima. They should reach the city of Nishinoomote, Kojima prefecture. Slightly large quantity Kagoshima Prefecture: Toshima Village Small quantity Kagoshima Prefecture: Yakushima Town, Nishinoomote Town, Nakatane Town. another explosion at 1613 that generated an ash plume 2.2 km above the crater and drifted N. A small amount of ashfall was reported in Yakushima, Nishinoomote, and Nakatane. A third explosion at 2059 that day produced an ash plume that rose 2.5 km above the crater and drifted N; ashfall was reported in Toshima village (4 km SSW). Explosions at 0628 and 0713 on 20 August generated ash plumes that rose 2.5-3 km above the crater and drifted N, resulting in ashfall in Toshima village, with smaller amounts of ash in Yakushima, Mishima, Ibusuki, Minamikyushu, and Makurazaki. On 21 August at 0617 an explosion generated an ash plume that rose 3.2 km above the crater and drifted N. A large amount of ashfall (over 1 mm) was reported in Toshima village and smaller amounts (less than 0.1 mm) were reported in Makurazaki, Minamisatsuma, Minamikyushu, Kagoshima, Ibusuki, and Hioki. A second explosion followed at 0906 that produced an ash plume 3.2 km above the crater that drifted N.  As of the 9th of August, JMA reported that volcano activity continues at moderately high levels, with moderate to strong explosions at the summit crater of On-take (Otake) NE of Suwanosejima. The volcano sent pyroclastic material to about 1,700 m. above the crater. The volcanic ash is scattered in various directions, particularly to the west. Explosions generated pyroclastic bombs and blocks ejected up to 500 meters from the crater. An almost constant glow is visible from the summit crater at night detected by surveillance cameras. Short-term electronic tilt monitoring recorded ground deformation on the western flank on July 15. The JMA indicates that the ballistic impacts of the volcanic bombs could affect an area approximately 1 km away from the main crater. As of the 29th of July JMA reported an explosion at 4:46 p.m., with a plume at 3,300 m. above the crater. An explosion at 5:16 p.m. was accompanied by a plume at 1,100 m. above the crater. Another, at 10:27 p.m. was accompanied by a plume at 2,900 m. above the rim of the crater; the ashes fell on the northwest of the volcano, including a large quantity on the village of Toshima. On the morning of the 29th, the eruption alert level was lowered from 3 to 2 / with restrictions in the crater area. However, large volcanic bombs are likely to fall within a radius of about 1 km from the crater. The activity continues. JMA reported that explosions continued at the Ontake crater of Suwanosejima from July 19 to 26, as well as visible incandescence on certain nights at the crater. There were 31 explosions recorded on July 22, after two days without an explosion. An explosion at 3 p.m. on July 23 produced an ash plume that rose 1.6 km and ejected bombs 200 m. The eruption plumes from July 23 to 26 reached 2.3 km; it was not known if any bombs had been thrown from the crater due to the weather conditions. The alert level remained at 3 and the public was warned to stay 2 km from the crater. JMA reported that a new explosion occurred at Suwanosejima at 7:58 a.m. on July 17, and the eruptive plume rose 3,400 m above the crater rim. Volcanic ash disperses northwest of the crater and a large amount of ash fell on the village of Toshima In addition, in the area from the crater about 4 km to the north, small volcanic bombs are blown away.JMA reported that on July 15 at 1:56 p.m. local time, an explosion was accompanied by a plume of gas and ash 2,200 meters above the Ontake. The alert level remains at 3, with a danger zone of 2 km radius. JMA reported that on July 12 a plume of gas and ash at 3,000 meters rose above the active crater, and on July 14 at 2:18 p.m., a plume at 2,800 meters above the crater.The ashes are scattered northwest of the crater, with falls over the village of Toshima. JMA reported that surveillance cameras from the Japan Meteorological Agency (JMA) observed a volcanic-type explosion at 11:44 a.m. local time on July 11. An ash plume rose to an altitude of 6,900 feet (2,100 m). Volcanic ash has scattered northeast of the crater, and within an hour a fairly large amount of ash is reported in Toshima village, as is ashfall in Kagoshima Prefecture. An almost constant glow in the Ontake crater suggests that the flow of magma is increasing inside the building. The explosions continue to generate pyroclastic bombs and boulders which are ejected up to 800 meters from the crater towards the northwest. JMA reported that 35 explosions at Suwanosejima's Ontake Crater produced eruption plumes that rose as high as 2 km above the crater rim during 28 June-5 July. Large volcanic bombs were ejected 400 m from the crater and crater incandescence was visible nightly. Eruption sounds were heard in Toshima village (4 km SSW). The Alert Level remained at 3 and the public was warned to stay 2 km away from the crater.JMA reported that Ontake Crater, eruptive activity has become more active as the eruptions are repeated over a long period of time. The volcanic alert level went from 2 to 3 (mountain entry regulation), with a danger notice within a radius of 2 km. due to projections of volcanic bombs. The explosions have multiplied since the 20th at the Otake crater: ... 9 times on the 20th, 10 times on the 21st, 15 times on the 22nd, 8 times on the 23rd. On June 24th at 3:00 pm, the observatory counted 6 explosions (provisional number) . At 10:54 p.m. on June 21 and 12:04 a.m. on June 22, the explosions ejected ballistic projectiles. Large volcanic bombs scattered about 900 m. from the crater in the northwest and southeast directions, respectively. On top of that, multiple volcanic bombs were scattered from the crater several hundred meters away. A new explosion occurred at 10:54 p.m. on 06/21/2021 from Ontake crater. Volcanic bombs were emitted, the largest reached 900 m. northwest of the crater.On June 22, the explosions became more frequent: 5 explosions were counted between 9 a.m. and 3 p.m., accompanied by an ash plume up to 1,200 m above the crater.The alert level is at 2 / regulation of the crater area. The activity on Suwanosjima has been the subject of numerous notices from the VAAC Tokyo since the beginning of June.JMA reported that 15 explosions at Suwanosejima's Ontake Crater produced eruption plumes that rose as high as 1.8 km above the crater rim during 11-18 June. Large volcanic bombs were ejected 500 m from the crater. Ashfall was reported in Toshima village (4 km SSW). Crater incandescence was visible nightly. The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater. JMA reported that 28 explosions at Suwanosejima's Ontake Crater produced eruption plumes that rose as high as 2.4 km above the crater rim during 4-11 June. Large volcanic bombs were ejected 500 m from the crater. Ashfall was reported in Toshima village (4 km SSW). Crater incandescence was visible nightly. The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater.JMA reported that on June 7 at 2:38 pm, an explosion accompanied by a plume entering the clouds at an altitude of 1,500 meters; the plume is heading northeast. JMA reported that 47 explosions at Suwanosejima's Ontake Crater produced eruption plumes that rose as high as 2.1 km above the crater rim during 21-28 May. Large volcanic bombs were ejected 700 m from the crater. Ashfall was reported in Toshima village (4 km SSW). Crater incandescence was visible nightly. The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater.JMA reported that intermittent eruptive activity at Suwanosejima's Ontake Crater produced plumes that rose as high as 1.6 km above the crater rim during 14-21 May. Large volcanic bombs were ejected 300 m from the crater. Crater incandescence was visible overnight during 18-19 May. The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater.JMA reported that six explosions at Suwanosejima's Ontake Crater produced eruption plumes that rose as high as 2 km above the crater rim during 7-14 May. Large volcanic bombs were ejected 400 m from the crater. The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater.JMA reported that 45 explosions at Suwanosejima's Ontake Crater produced eruption plumes that rose as high as 1.7 km above the crater rim during 23-30 April. Large volcanic bombs were ejected 400 m from the crater. Nighttime crater incandescence was visible during 24-25 April. The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater. Continuous Vulcanian activity continues characterized by occasional ash emissions from the Ontake Summit Crater. The Japan Meteorological Agency (JMA) reported eruption plumes that rose up to 1.7 km above the crater rim and ejected bombs up to 600 m from the crater. The incandescence of the crater was visible at night on satellite images. The alert level remained at 2 (on a scale of 5).JMA reported that incandescence from Suwanosejima's Ontake Crater was visible at night during 9-16 April. Seven explosions generated ash plumes that rose as high as 1.5 km above the crater rim and ejected bombs 400 m away. Ashfall was reported in Toshima village (4 km SSW). The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater. JMA reported that incandescence from Suwanosejima's Ontake Crater was visible at night during 5-9 April. Four explosions generated ash plumes that rose as high as 1.6 km above the crater rim and ejected bombs 600 m away. Ashfall was reported in Toshima village (4 km SSW) during 8-9 April. The Alert Level remained at 2 and the public was warned to stay 1 km away from the crater.JMA reported that during 30-31 March large volcanic bombs were ejected at least 41 times from Suwanosejima's Ontake Crater as high as 800 m above the crater rim and to distances as far as 1 km. The Alert Level was raised to 3 (on a 5-level scale) at 0330 on 31 March and the public was warned to stay outside a 2 km radius of the crater. The increased activity prompted an overflight that same day where scientists confirmed several hundred high-temperature bomb deposits with a thermal camera within a 1 km radius. Explosions at 2205 on 30 March and 0257 on 31 March ejected bombs onto the S and SE flanks, respectively. Grayish-white emissions rose from the crater. After 1500 eruption plumes rose as high as 1.4 km above the crater rim. The number of explosions decreased; two per day were recorded during 1-2 April and one was recorded on 3 April. The Alert Level was lowered to 2 on 5 April and the public was warned to stay 1 km away from the crater.JMA reported that the seismic network for Suwanosejima's Ontake Crater detected a total of 17 explosions during 19-26 March. These events produced eruption plumes that rose as high as 1.2 km above the crater rim, drifting S, W, and SW, and ejected bombs as far as 500 m away from the crater. Incandescence from the crater was occasionally visible at night. On 30 March at least 18 explosions were detected, generating ash  plumes that rose 600-1,500 m above the crater drifting E, SE, and NE and ejecting material as far as 800 m S of the crater. On 31 March the Alert Level was raised to 3 (on a 5-level scale). JMA reported that the seismic network for Suwanosejima's Ontake Crater detected a total of 11 explosions during 12-19 March. These events produced eruption plumes that rose as high as 1.7 km above the crater rim and ejected bombs up to 700 m away from the crater. Incandescence from the crater was occasionally visible at night. The Alert Level remained at 2 (on a 5-level scale). Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows

JAPAN - Kirishimayama volcano group - Shinmoedake Peak - (Kyushu)

February 2nd, 2021

As of the 2nd of February, JMA reported an increase in seismicity with the epicenter below the crater, with 107 in the past 10 days of volcanic earthquakes. No changes in inclinometer observations, but continuous GNSS observation shows an accumulation of magma in the deep part of Kirishima. A small white plume, about sixty meters high, surmounts the crater. The alert level is at 2 / do not approach the crater. Previous news 2020 - JMA reported that the number of volcanic earthquakes at Shinmoedake (Shinmoe peak, a stratovolcano of the Kirishimayama volcano group) began to increase on 18 December and remained elevated. A total of 300 earthquakes were located beneath the summit crater during 16-25 December. No changes were detected in deformation and emission data. The Alert Level was raised to 2 (on a scale of 1-5) on 25 December, and the public was warned to exercise caution within a 2-km radius of the crater. JMA noted that no eruption had occurred at Shinmoedake (Shinmoe peak, a stratovolcano of the Kirishimayama volcano group) since 28 June 2018. Volcanic earthquakes with hypocenters just below Shinmoedake had increased around 17 November 2019, fluctuated afterwards, and then began a decreasing trend in mid-October 2020. Sulfur dioxide levels were generally low, deformation data showed no changes, and both fumarolic and geothermal area activity remained stable. The Alert Level was lowered to 1 (on a scale of 1-5) on 11 December. JMA raised alert on January 2, 2020 at 10:40 p.m. JST to level 2 / do not approach the crater; The change is due to a series of volcanic earthquakes recorded from 4 p.m. on January 1, with their epicenter just below the crater. Previous news 2019 - JMA raised the Kirishimayama / Shinmoedake alert level on Nov. 18 at 5:10 am JST from 1 to 2 / do not approach the crater, following an increase in the number of volcanic earthquakes, with epicentres just below the crater. On November 18, 16 volcanic earthquakes were recorded from 0 to 15h local time. The number of volcanic earthquakes below Shinmoedake (Shinmoe peak), a stratovolcano of the Kirishimayama volcano group, increased on 25 February 2019 prompting JMA to raise the Alert Level to 2 (on a scale of 1-5). The number of daily volcanic earthquakes decreased during 3-4 March, and each day through 18 March only a few were recorded. Previously in 2018, A punctual emission of gas and ashes occurred from the volcano on 27th of June at 15:34 local; the plume has reached an altitude of 2,200 meters.The alert level remains at 3 out of 5, and it is recommended not to approach the volcano.A new explosive eruption occured from the crater of the Shinmoedake on June 22 at 9:09 local. It was accompanied by an ash plume rising to 2,600 meters; the ash emission lasted about 5 minutes according to the images provided by the JMA webcam. A shock wave spread from the crater over 1,100 meters.That is the 49th explosion at Shinmoedake since April 5, 2018.The Tokyo VAAC reported that on 15 May ash plumes from Shinmoedake (Shinmoe peak), a stratovolcano of the Kirishimayama volcano group, were identified in satellite images drifting S at an altitude of 7.6 km (25,000 ft) a.s.l. JMA noted that white plumes rose 100 m above the crater rim during 18-21 May. The Alert Level remained at 3 (on a scale of 1-5). JMA reported that a short eruption occurred on 14th of May at 2:.44 am. An ash plume rose to about 4500 m high above the summit crater and drifted toward Southwest. This activity continued until 4:10 am. It's the first activity since the 6th of April. A pyroclastic flow travelled 2 km down the flank. Volcanic earthquake rates under the crater increased after the eruption. Shallow, low-frequency earthquakes and tremor were also reported. The Alert Level remained at 3 (on a scale of 1-5). As of the 5th of April, JMA reported that a new explosive eruption marked the Shinmoedake this April 5 in the early hours. Two larger explosions were observed at 3:31 and 3:47, accompanied by high ash emissions and a plume rising up to 5,000 meters, traversed by volcanic lightning generated by friction of ash particles..Based on observations during overflights on 28 March and 2 April, JMA reported that the crack on the W flank of Shinmoedake (Shinmoe peak), a stratovolcano of the Kirishimayama volcano group, continued to widen. White emissions rose as high as 500 m above the crater rim. Several high-temperature regions around the margins of the lava in the crater, and from the flow on the NW flank, were detected on 28 March. The lava flow on the NW flank advanced 85 m from 9-29 March. Sulfur dioxide emissions were 300 tons/day on 30 March. The number of volcanic earthquakes began to decline after 26 March; though from 0014 to 1430 on 3 April the number increased to 239. Many low-frequency earthquakes with shallow hypocenters continued to be recorded. The Alert Level remained at 3 (on a scale of 1-5). JMA reported that the eruption at Shinmoedake (Shinmoe peak), a stratovolcano of the Kirishimayama volcano group, continued during 19-27 March. Lava effusion possibly stopped on 9 March, though the lava flow on the NW flank continued to advance. A high number of volcanic earthquakes continued to be recorded, in addition to many low-frequency earthquakes with shallow hypocenters. Short-duration volcanic tremor was occasionally recorded. During a field survey on 22 March scientists measured 600 tons/day of sulfur dioxide gas, and noted that the crack on the W flank had grown slightly larger. On 25 March an explosion at 0735 was followed by an ash plume that rose 3.2 km above the crater rim and ejected material as far as 800 m. An event at 0845 generated an ash plume that rose 2.1 km above the crater rim, and a very small pyroclastic flow that traveled 800 m W. Sulfur dioxide emissions were 300 tons/day on 24 March. The Alert Level remained at 3 (on a scale of 1-5). Kirishimayama is a large group of more than 20 Quaternary volcanoes located north of Kagoshima Bay. The late-Pleistocene to Holocene dominantly andesitic group consists of stratovolcanoes, pyroclastic cones, maars, and underlying shield volcanoes located over an area of 20 x 30 km. The larger stratovolcanoes are scattered throughout the field, with the centrally located, 1700-m-high Karakunidake being the highest. Onamiike and Miike, the two largest maars, are located SW of Karakunidake and at its far eastern end, respectively. Holocene eruptions have been concentrated along an E-W line of vents from Miike to Ohachi, and at Shinmoedake to the NE. Frequent small-to-moderate explosive eruptions have been recorded since the 8th century. (GVN/GVP)

JAPAN - Aso volcano (Kyushu)

May 5th, 2021

JMA reported that volcanic tremor amplitude increased at Asoson at around 2100 on 2 May 2021 prompting JMA to raise the Alert Level to 2 (on a scale of 1-5) at 2255. The public was warned to stay at least 1 km away from the crater. Sulfur dioxide emissions were low, at 200 tons per day on 3 May, and white steam plumes rose as high as 300 m above the crater rim. Previous news 2020 - JMA reported that no eruptions at Asosan had been observed since 16 June; only white plumes rose as high as 1 km above the crater afterwards. Sulfur dioxide emissions had been low since mid-June, and volcanic-tremor amplitude decreased to low levels on 18 July. During a field inspection on 17 August, observers noted no water in the crater and a whitish area at the center of the crater floor. On 18 August the Alert Level was lowered to 1 (on a scale of 1-5). JMA reported that the eruptive activity continued. On June 5th, an ash plume is observed between 500 and 900 meters (after 3 p.m.) above the Nakadake crater.The activity is stil underway on June 6th. JMA reported that eruptive activity at Asosan was recorded during 29 May-2 June. Volcanic plumes rose 1,000-1,600 m above the crater rim. The sulfur dioxide emission rate was high; the rate was 1,000 tons per day on 27 May. The Alert Level remained at 2 (on a scale of 1-5). JMA reported that eruptive activity at Asosan was recorded during 11-18 May. Volcanic plumes rose 600-1,000 m above the crater rim and caused ashfall in areas downwind. The sulfur dioxide emission rate was high; the rate was 1,300 tons per day on 17 May. The Alert Level remained at 2 (on a scale of 1-5). JMA reported that eruptive activity at Asosan was recorded during 4-11 May. Volcanic plumes rose 700-900 m above the crater rim and caused ashfall in areas downwind. The sulfur dioxide emission rate was high at 3,000-4,800 tons per day during 7-8 May. The Alert Level remained at 2 (on a scale of 1-5). JMA reported that eruptive activity at Asosan was recorded during 13-20 April. Gray-white ash plumes rose 800-1,100 m above the crater rim and caused ashfall in areas downwind. The sulfur dioxide emission rate was somewhat high at 1,600 and 1,200 tons per day on 14 and 16 April, respectively. The Alert Level remained at 2 (on a scale of 1-5). .JMA reported that eruptive activity at Asosan was recorded during 9-16 March. Gray-to-white ash plumes rose 600-800 m above the crater rim and caused ashfall in areas downwind. The sulfur dioxide emission rate was high at 1,600-1,700 tons per day on 11 and 16 March. The Alert Level remained at 2 (on a scale of 1-5). VAAC Tokyo reports ash emissions to Asosan on Kyushu on February 29 and March 1, 2020, following an activity of previous duration of the volcano. The ash clouds drift east to an altitude flight 70.JMA reported that eruptive activity at Asosan was recorded during 10-17 February. Ash plumes rose 900-1,300 m above the crater rim and caused ashfall in areas downwind. The sulfur dioxide emission rate continued to be at a high level. The Alert Level remained at 2 (on a scale of 1-5).JMA reported that eruptive activity at Asosan was recorded during 27 January-3 February. Plumes rose 1.1 km above the crater rim and caused ashfall in areas downwind. The sulfur dioxide emission rate was high, ranging from 1,900 to 3,400 tons per day during 28-29 and 31 January and 3 February. The Alert Level remained at 2 (on a scale of 1-5).JMA reported that eruptive activity at Asosan was recorded during 7-20 January. Plumes rose 0.9-1 km above the crater rim during 15-20 January and caused ashfall in areas downwind; the Tokyo VAAC reported that ash plumes mainly drifted S, SE, E, and NE. The Alert Level remained at 2 (on a scale of 1-5). The 24-km-wide Asosan caldera was formed during four major explosive eruptions from 300,000 to 90,000 years ago. These produced voluminous pyroclastic flows that covered much of Kyushu. The last of these, the Aso-4 eruption, produced more than 600 km3 of airfall tephra and pyroclastic-flow deposits. A group of 17 central cones was constructed in the middle of the caldera, one of which, Nakadake, is one of Japan's most active volcanoes. It was the location of Japan's first documented historical eruption in 553 CE. The Nakadake complex has remained active throughout the Holocene. Several other cones have been active during the Holocene, including the Kometsuka scoria cone as recently as about 210 CE. Historical eruptions have largely consisted of basaltic to basaltic-andesite ash emission with periodic strombolian and phreatomagmatic activity. (GVP/GVN)

JAPAN - Asama volcan (Honshu)

August 8th, 2021

On 6 August JMA lowered the Alert Level for Asamayama to 1 (on a scale of 1-5), noting that the number of shallow volcanic earthquakes had been decreasing, sulfur dioxide gas emissions had been low, and deformation on the W flank had stabilized. JMA reminded the public to stay 500 m away from the crater.On 23 March JMA raised the Alert Level for Asamayama to 2 (on a scale of 1-5), noting slight inflation on the W side of the volcano since 15 March and an increase in the number of daily volcanic earthquakes that have occurred since 20 March (36 recorded on 20 March and increasing to 77 events by 1500 on 23 March). After 23 March the number of daily volcanic earthquakes began to fluctuate, decreasing to 15 on 28 March and then 23 by 1500 on 29 March. The sulfur dioxide emission rate was 800 tons per day (t/d) on 22 March, 400 t/d on 24 March, and 700 t/d on 25 March, compared to the previous measurement of 200 t/d on 25 February.On 5 February JMA lowered the Alert Level for Asama to 1 (on a scale of 1-5) noting that no deformation or crater incandescence had been detected since late November 2020, sulfur dioxide emissions had trended downward beginning in December, volcanic earthquakes were recorded only occasionally since mid-December, and the number of small-amplitude volcanic tremors were recorded occasionally and had not increased. Previous news 2020 - JMA reported that since June 20th, 2020, the number of volcanic earthquakes increased, then fluctuated downward. The number of volcanic earthquakes is 59 on June 24, 113 on June 25, 120 on June 26, 80 on June 27, 24 on 28.06 and 2  at 3:00 p.m. today (29 - preliminary value). Observation by a surveillance camera showed that the white plume remained below 200 m above the edge of the crater, and no particular change was observed. JMA raised the alert level to 2 / do not approach the crater, on June 25 at 3 p.m. JST. It is advised not to enter the danger zone in the municipalities of Gunma: Tsumagoi-mura, Nagano: Komoro-shi, Karuizawa-machi, Miyota-machi. Since June 20, seismic activity on the western flank of the volcano has continued at fluctuating levels. On June 24 and 25, the seismic station recorded 59 and 69 volcano-tectonic earthquakes respectively. An eruption could occur without warning. The warning bulletin indicates that the ballistic impacts of volcanic bombs and pyroclastic flows could affect an area about 2 km away from the main crater. Asamayama, Honshu's most active volcano, overlooks the resort town of Karuizawa, 140 km NW of Tokyo. The volcano is located at the junction of the Izu-Marianas and NE Japan volcanic arcs. The modern Maekake cone forms the summit and is situated east of the horseshoe-shaped remnant of an older andesitic volcano, Kurofuyama, which was destroyed by a late-Pleistocene landslide about 20,000 years before present (BP). Growth of a dacitic shield volcano was accompanied by pumiceous pyroclastic flows, the largest of which occurred about 14,000-11,000 BP, and by growth of the Ko-Asama-yama lava dome on the east flank. Maekake, capped by the Kamayama pyroclastic cone that forms the present summit, is probably only a few thousand years old and has an historical record dating back at least to the 11th century CE. Maekake has had several major plinian eruptions, the last two of which occurred in 1108 (Asamayama's largest Holocene eruption) and 1783 CE. (GVN/GVP)

JAPAN - Kuchinoerebujima ( Ryu-Kyu islands)

July 8th , 2021

JMA reported that deformation data at Kuchinoerabujima had shown a deflationary trend since February and the number of volcanic earthquakes had been decreasing since May. The Alert Level was lowered to 2 (on a scale of 1-5) on 5 July, and JMA reminded the public to stay 1 km away from Shindake Crater in general and 2 km away from the W flank.JMA reported that the number of volcanic earthquakes located at shallow depths beneath Kuchinoerabujima's Shindake Crater increased on 21 February and remained elevated. The Alert Level was raised to 3 (the middle level on a scale of 1-5) on 28 February. No other monitoring data showed upward trends and no surficial changes were visible; sulfur dioxide emissions remained low at 60 tons per day on 24 February.JMA lowered the Alert Level for Kuchinoerabujima to 2 (the second lowest level on a scale of 1-5) on 19 January, noting downward trends in activity data since mid-2020. Specifically, after May 2020 no volcanic earthquakes were detected, inflation slowed to baseline levels, and sulfur dioxide emissions began decreasing though remained slightly high. Additionally, crater incandescence had not been visible after July and no eruptions were recorded after August 2020. Previous news 2020 - JMA reported that t activity continued at the Shindake crater of Kuchinoerabujima, with an eruption that occurred at 11:05 a.m. on April 29, characterized by a plume of ash and gas 1,000 meters above the crater. The plume flows north, then northeast.JMA reported that very small eruptions are still occuring intermittently in the crater of Shindake. On April 24 at 11:15 p.m., a plume was reported 300 meters above the crater. No volcanic block collapse or pyroclastic flow was observed. A field study from April 21-23 revealed a crack on the west side of the Shindake crater, where a slight increase in temperature in the nearby geothermal field was reported. JMA also reported an increase in activity level on April 24. JMA reported that during 13-20 April very small eruptive events at Kuchinoerabujima's Shindake Crater produced grayish-white plumes that rose 600 m above the crater rim. An event at 0147 on 20 April generated a grayish-white plume that rose 800 m and drifted SE. The Alert Level remained at 3 (the middle level on a scale of 1-5). JMA reported that currently on level 3 alert, activity continued, with the emission of a white-gray plume on April 16 at around 3 p.m. local. The activity was in progress. Previously, JMA reported that activity continues, according to the JMA with plumes of gas and ash observed this April 6 at 8:10 a.m. JST, from a height of 400 meters, and at 3 p.m. JST, with a plume reaching 700 meters. Ash and lapilli falls are expected. The alert level is 3 / do not approach the volcano. As of the 23rd of March, JMA recorded a white plume 400 meters above the crater of the volcano. Seismicity is characterized by increasing volcano-tectonic earthquakes, the number of which reaches 25 / day. Sulfur dioxide emissions are around 1,300 tonnes / day. The latest bulletin of March 23 also reported bombs and pyroclastic flows likely to affect an area up to 2 km from the crater. JMA reported that very small eruptive events recorded at Kuchinoerabujima's Shindake Crater during 20-21 February generated whitish plumes that rose 200 m above the crater rim. No changes were observed during field visits on those two days. Sulfur dioxide emissions were 400-600 tons per day during 20-23 February. The Alert Level remained at 3 (the middle level on a scale of 1-5). JMA reported that at 1211 on 13 February a very small eruption at Kuchinoerabujima’s Shindake Crater produced a grayish white plume that rose 300 m above the crater rim and drifted NE. The Alert Level remained at 3 (the middle level on a scale of 1-5).JMA reported that a small explosion occurred on February 9 at 9:50 a.m. local, with an ash plume rising 500 meters above the crater, before dispersing to the southeast.As of the 4th of February, JMA reported that a pyroclastic flow extending for about 900 meters was observed on the southwest side of Mount Shindake, accompanied by a co-pyroclastic plume 626 meters high, on Kuchinoerabu Island, in the Kagoshima prefecture. However, it did not reach the residential areas and no injuries or damage to the residences were confirmed, according to the local government. The height of the ash plume could not be assessed by the VAAC due to the cloud cover. According to JMA, the eruption occurred around 5.30 a.m. on February 3, 2020. Large deposits of ash were found scattered in areas about 600 meters from the crater. Very small eruptive events recorded at Kuchinoerabujima on 20, 23, and 24 January produced grayish-white plumes that rose 500 m above the crater rim. Ashfall 2 km NE of the crater was confirmed during aerial observations on 23 January. The number of volcanic earthquakes increased during 25-26 January. An eruptive event was recorded at 0148 on 27 January, though weather clouds prevented visual confirmation; volcanic tremor, changes in tilt data, and infrasound signals accompanied the event. Sulfur dioxide gas emissions were 200-1,000 tons per day during 20-27 January; JMA characterized emissions of 600-1,000 tons per day as high. JMA reported trhat white plumes from Kuchinoerabujima rose 600 m above the crater rim during 14-17 January. Minor eruptive activity from 1659 on 17 January through 1030 on 20 January generated grayish-white plumes that rose 300 m. Sulfur dioxide emissions were high at 800 and 1,600 tons per day on 15 and 16 January, respectively. The Alert Level remained at 3 (the middle level on a scale of 1-5). VAAC Tokyo reported that an eruption took place on January 11th at 3:05 p.m. and continued at 3:30 p.m., producing a thick plume of ash and gas rising to 2,000 meters before entering the clouds. The ash is dispersed in an eastern sector.The alert level is 3 / "do not approach the crater" since 28th of October.2019. A group of young stratovolcanoes forms the eastern end of the irregularly shaped island of Kuchinoerabujima in the northern Ryukyu Islands, 15 km west of Yakushima. The Furudake, Shindake, and Noikeyama cones were erupted from south to north, respectively, forming a composite cone with multiple craters. The youngest cone, centrally-located Shintake, formed after the NW side of Furutake was breached by an explosion. All historical eruptions have occurred from Shintake, although a lava flow from the S flank of Furutake that reached the coast has a very fresh morphology. Frequent explosive eruptions have taken place from Shintake since 1840; the largest of these was in December 1933. Several villages on the 4 x 12 km island are located within a few kilometers of the active crater and have suffered damage from eruptions. (GVN/GVP) - NHK webcam

JAPAN - Azumayama volcano (Honshu)

June 19th, 2019

On 17 June JMA lowered the Alert Level for Azumayama to 1 (the lowest level on a 5-level scale), noting that deformation and elevated seismicity recorded in May had stabilized and decreased, respectively. JMA reported that yhe number of volcanic earthquakes at Azumayama increased on 5 May and data from a tiltmeter about 1 km SE of Ohana Crater showed inflation on 9 May, prompting JMA to raise the Alert Level to 2 (on a 5-level scale). Field observations on 7 and 10 May indicated no changes in the fumarolic and thermal areas around Ohana. Seismicity began to decrease on 10 May, though continued to fluctuate through 20 May. Deformation continued but at a slower rate. The Azumayama volcanic group consists of a cluster of stratovolcanoes, shield volcanoes, lava domes, and pyroclastic cones. The andesitic and basaltic complex was constructed in two E-W rows above a relatively high basement of Tertiary sedimentary rocks and granodiorites west of Fukushima city. Volcanic activity has migrated to the east, with the Higashi-Azuma volcano group being the youngest. The symmetrical Azuma-Kofuji crater and a nearby fumarolic area on the flank of Issaikyo volcano are popular tourist destinations. The Azumayama complex contains several crater lakes, including Goshikinuma and Okenuma. Historical eruptions, mostly small phreatic explosions, have been restricted to Issaikyo volcano at the northern end of the Higashiyama group.(GVN/GVP)
.

JAPAN - Hakoneyama volcano (Honshu)

October 9th, 2019

On 7 October JMA lowered the Alert Level for Hakoneyama to 1 (the lowest level on a 5-level scale), noting that the number of volcanic earthquakes had decreased to background levels after a spike in seismicity was recorded in May. Inflation had been detected but had become almost stagnant after late August. Fumaroles in the Owakudani hot springs area continued to be active, with gas-and-steam plumes rising 100-400 m above their vents. JMA reported that the number of earthquakes at Hakoneyama increased on 18 May and remained elevated through 27 May. The epicenters were centered around the W bank of Lake Ashinoko and around Komagatake. Global Navigation Satellite Systems (GNSS) data continued to indicate a trend of inflation. The Alert Level remained at 2 (on a 5-level scale). JMA reported that the number of earthquakes at Hakoneyama increased during 18-19 May, with epicenters centered around the W bank of Lake Ashinoko and around Komagatake. Fumaroles in the Owakudani hot springs area continued to be active. Global Navigation Satellite Systems (GNSS) data showed changes in deformation beginning in mid-March. On 19 May JMA raised the Alert Level to 2 (on a 5-level scale). Elevated seismicity continued to be recorded through 21 May. Hakoneyama volcano is truncated by two overlapping calderas, the largest of which is 10 x 11 km wide. The calderas were formed as a result of two major explosive eruptions about 180,000 and 49,000-60,000 years ago. Scenic Lake Ashi lies between the SW caldera wall and a half dozen post-caldera lava domes that were constructed along a NW-SE trend cutting through the center of the calderas. Dome growth occurred progressively to the NW, and the largest and youngest of these, Kamiyama, forms the high point. The calderas are breached to the east by the Hayakawa canyon. A phreatic explosion about 3000 years ago was followed by collapse of the NW side of Kamiyama, damming the Hayakawa valley and creating Lake Ashi. The latest magmatic eruptive activity about 2900 years ago produced a pyroclastic flow and a lava dome in the explosion crater, although phreatic eruptions took place as recently as the 12-13th centuries CE. Seismic swarms have occurred during the 20th century. Lake Ashi, along with the thermal areas in the caldera, is a popular resort destination SW of Tokyo.(GVN/GVP)

JAPAN - Sakurajima volcano (Kyushu)

August 10th, 2021

MA reported that incandescence from Minamidake Crater (at Aira Caldera's Sakurajima volcano) was visible at night during 2-9 August. Very small eruptive events were recorded during 2-6 August. The sulfur dioxide emission rate was relatively elevated at 1,500 tons per day on 4 August. The Alert Level remained at 3 (on a 5-level scale), and residents were warned to stay 2 km away from the crater.JMA reported that incandescence from Minamidake Crater (at Aira Caldera's was visible at night during 26 July-2 August. An eruptive event at 2009 on 28 July produced a plume that rose 1.3 km above the crater rim. A very small eruptive event was recorded on 2 August. The Alert Level remained at 3 (on a 5-level scale), and residents were warned to stay 2 km away from the crater.JMA reported that incandescence from Minamidake Crater (at Aira Caldera's Sakurajima volcano) was visible at night during 19-26 July. A very small eruptive event was recorded on 19 July. The sulfur dioxide emission rate was relatively elevated at 1,000 tons per day on 21 July. The Alert Level remained at 3 (on a 5-level scale), and residents were warned to stay 2 km away from the crater. JMA reported that very small eruptive events were occasionally recorded at Minamidake Crater (at Aira Caldera's Sakurajima volcano). Crater incandescence was visible at night during 9-12 July. The Alert Level remained at 3 (on a 5-level scale), and residents were warned to stay 2 km away from the crater.JMA reported nightly incandescence during 28 June-5 July from Minamidake Crater (at Aira Caldera's Sakurajima volcano). An eruptive event on 29 June produced an ash plume that rose 1 km before entering weather clouds. The sulfur dioxide emission rate was low at 600 tons per day on 30 June. The Alert Level remained at 3 (on a 5-level scale), and residents were warned to stay 2 km away from the crater. JMA reported that during 14-21 June incandescence from Minamidake Crater (at Aira Caldera's Sakurajima volcano) was visible nightly. The sulfur dioxide emission rate was elevated at 1,400 tons per day on 15 June. The Alert Level remained at 3 (on a 5-level scale), and residents were warned to stay 2 km away from the crater.JMA reported that during 7-14 June incandescence from Minamidake Crater (at Aira Caldera's Sakurajima volcano) was visible nightly. The sulfur dioxide emission rate was low at 900 tons per day on 9 June. The Alert Level remained at 3 (on a 5-level scale), and residents were warned to stay 2 km away from the crater.JMA reported that during 31 May-7 June incandescence from Minamidake Crater (at Aira Caldera's Sakurajima volcano) was visible nightly and very small eruptive events were occasionally recorded. The sulfur dioxide emission rate was 2,700 tons per day on 2 June. The Alert Level remained at 3 (on a 5-level scale), and residents were warned to stay 2 km away from the crater.The Sakura-Jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-Jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76. Sakurajima webcam

Japan - Fukutoku-Oka-no-ba submarine volcano

September 16th, 2021

The Japanese Coast Guard reported that during an overflight of Fukutoku-Oka-no-Ba on September 12, observers noted that the West Island was unchanged, while the East side had been completely eroded and submerged. The yellow-green to yellow-brown discolored water extended from the ventilation zone to the SW, S and SE, suggesting continued eruptive activity. Another area of ​​discolored water was approximately 2 km in diameter and was about 2 km ENE of the volcano, attesting to still ongoing activity. The discolored water prompted JMA to issue a navigation warning to nearby vessels.An overview of the eruptive site of Fukutoku Okanoba on August 26, 2021 by the Japanese coast guard shows a strong erosion of the eastern crescent of Niijima. Niijima on the west side has not changed significantly and remains as land for some time. A gray substance that appears to be volcanic ash erupts from the center of the crater, causing a brownish-brown color. The colored waters are also distributed on a large scale and active volcanic activity is still ongoing.The Geospatial Information Authority of Japan analyzed satellite images observed by the NASA / US Geological Survey (USGS) Landsat-8 earth observation satellite at 10:00 a.m. (Japan time) on the 17th, and the shape of Niijima / Fukutoku Okanoba.The West Island measures 2.5 km for an area of ​​0.3 km²; the eastern crescent measures 1.5 km for an area of ​​0.1 km². They can see an erosion on the east side, with an advantage for the west side, compared to the first photos. As of the 18th of August, JMA reported that following the phreatomagmatic eruption of August 13, 2021 (see previous news), an island was formed; it is crescent-shaped with a bay pierced above the underwater vent, and is composed of unstable materials, ashes and blocks. The sustainability of this new island will depend on future activity: if lava flows are produced which will seal the first materials, its probable survival is likely to increase. The Niijima, formed with a diameter of about 1 km, is already changing due to marine erosion.The danger in the immediate vicinity is linked to the production of volcanic bombs, or even to a possible base surge. The ash emitted at the start of the eruption disrupted aviation, but this activity has stopped for the moment. Previous news - Observation overflights were carried out in Fukutoku-Okanoba by the Japan Coast Guards teams on August 13 and 15, 2021. They make it possible to specify that the initial eruptive plume of gas and vapor rose to an altitude estimated at 16 km. and unfolded as an umbrella. Several international flights between Japan and the Philippines were canceled on August 15 due to possible ash emissions.On August 15, black jets of the "surtseyen" type were visible in the plume of gas and steam, above the horseshoe structure on the Coast Guard video. The eruption of the submarine volcano Fukutuku - Okanoba, in the Ogasawara Islands, which began on August 13, 2021 continued on 14th of August.The eruptive plume of white vapor, traversed by lightning caused by the friction of the pyroclasts expelled at high speed, continues to be emitted and to drift in a west-southwest direction.The Sentinel-5P / Tropomi satellite recorded a strong plume of sulfur dioxide 35 km from the volcano and 3 km. of altitude, with 18.53 DU of SO2. The estimated mass at 300 km is 6.5 kilotons. Previously, According to the observation of the Himawari meteorological satellite, an eruption was observed from around 6:20 a.m. on August 13, 2021 at the submarine volcano Fukutoku Okanoba (about 50 km south of Iwo Jima - Bonin islands). A volcanic cloud spreads westward, without affecting any population. Fukutoku-Oka-no-ba is an underwater volcano located 5 km NE of the pyramidal island of Minami-Ioto. Water discoloration is frequently observed from the volcano and several ephemeral islands formed in the 20th century. The first of these formed Shin-Ioto ("New Sulfur Island") in 1904, and the most recent island was formed in 1986. The volcano is part of an elongated edifice with two high oriented topographic peaks. NNW-SSE, and is a trachyandesite volcano geochemically similar to Ioto. The last eruption dates from February 3, 2010 to April 8, 2010 (GVN/GVP)

Japan - Nishinoshima volcano - Izu Island

August 17th, 202&

As of the 15th of August, JMA reported that Explosive activity has resumed and continues in Nishino-shima. VAAC Tokyo has warned of a volcanic ash plume rising to an estimated altitude of 2100 m., or flight level 070 and moving at 10 kts in the NE direction. JMA reported that ash plumes from Nishinoshima in the Ogasawara Islands were visible on satellite images on August 14, rising about 1,900 meters and drifting north. The Japanese Coast Guard carried out an overflight the next day and did not observe any eruptive activity or new deposits the day before. The central crater is well open and occupies a large part of the island. Previous news 2020 - An overflight of Nishinoshima was carried out on November 24th in the afternoon. No emission was confirmed, on the other hand the inner wall of the cone exhibited high temperatures, and vapor emissions were observed in several places of the inner wall and on the edge of the crater. Discolored waters are distributed from the west shore to the east shore. In the south of the island, there is a quantity of acidic and brown water. Experts have reported a recent change in the composition of volcanic ash emitted by Nishinoshima. The magma seems to come from a greater depth, and future developments could include a collapse of the central cone, leading to subsidence of the whole island, and a possible tsunami. The large volumes of lava emitted made the island grow by 40%, increasing it from 2.89 km² in May 2019 to 4.1 km² in August 2020, based on satellite images. There was also a change in the mode of eruption. Nishinoshima was only emitting lava until June, but began discharging large volumes of ash in late July, covering the entire island under several meters of this brown ash. Ash analysis in July showed that its silica dioxide content has dropped from 60 to 55%. The magnesium and calcium content has increased, resulting in a greater density of magma. An overflight of Nishinoshima was carried out by the Japan Coast Guards on August 19 between 1:25 p.m. and 2:15 p.m. Despite the veil of clouds, it was possible to observe a consequent widening of the crater of the pyroclastic cone, already partly noticed on the satellite images of August 14 ; a strong diffusion on the infrared images testifies to the activity in the crater, and on a large delta at the edge of the sea .Degassing generates a rather white plume, generous but not very high confirmed by the satellite images, on which the ash clouds are not identifiable.JMA reported that a small explosion occurred on August 16 in Nishinoshima, visible in a NASA image. The VAAC Tokyo reported the continuation of the ash emissions, up to an altitude of flight 130. GSI has uploaded the SAR intensity images of the Daichi-2 satellite taken of Nishinoshima between July 31 and August 14, 2020. The interference zones were considerably reduced over almost the entire surface of the island, covered with ash. The image taken on August 14 showed an expansion of the pyroclastic cone crater. On August 15, gas and ash emissions continue, with the emission of a plume in a southwesterly direction, dissipating in a western sector. JMA reported that explosive activity continues, with an ash plume estimated at an altitude of 4,000 meters / alt. Flight 130, by VAAC Tokyo. On August 11, Nishinoshima was at the center of the cyclonic system formed in southern Japan by Tropical Storm SIX, weakened into a tropical depression while it carried the plume of ash and sulphate aerosols emitted by the current eruption.JMA reported a colorful plume at 3,800 meters asl. on Nishinoshima, south-eastbound, on August 9 at 2:20 p.m. local time. The eruption continues and a strong signal of sulfur dioxide is reported by Tropomi. JMA reported that activity of Nishinoshima continues, with ash emissions, reported by the VAAC Tokyo, partially obscured in its western part by clouds. A strong sulfur dioxide signal is noted by Tropomi. The Taiwan News reports that volcanic dust from an eruption on the Japanese island of Nishinoshima was responsible for a sudden deterioration in air quality on Taiwan's sparsely populated East Coast on Thursday evening (August 6), according to Taiwan News. meteorological experts. JMA reported that activity remained on Nishinoshima, where VAAC Tokyo reported ash plumes reaching up to 5,800 meters in early August. Their dispersion takes place in multiple directions. The Sentinel-5P / Tropomi Satellite still reports strong signals of sulfur dioxide around Nishinoshima, with this August 06, 98.45Du of SO2 at an altitude of 6 km. JMA reported for this August 4 that Sentinel-5P / Tropomi recorded 20.88 DU of sulfur dioxide at an altitude of 10 km. AIRES has analyzed these SO2 emissions over the last 40 days and estimates them between 50 and 100 kilotons per day, or about 2-4% of the annually global anthropogenic SO2 emissions. JMA reported that on July 30th, an observation was made of the gray plume emanating from the crater which reached a height of about 3,000 meters, passing through thin clouds in the sky and progressing south from the aircraft. Until now, the rugged black lava has spread over the surface of the island, but during the day it is covered in brown volcanic ash several meters thick. Scoria hill seems to remain in its old configuration (Video). AIRES analyzed the plumes emitted by the volcano, and noticed differences in spectrum between the Himawari & Modis photos of July 8 and July 30, 2020, suggesting changes and a higher silicate content. Previously, JMA reported that the activity continued on July 30th with at 9 p.m. a new eruption, accompanied by an ash plume at 5,300 meters above the crater. The dispersal was to the south, then to the west. JMA reported that on July 27th, the plume was drifting NW, then N according to VAAC Tokyo and Nasa Worldview images. An area of ​​water discoloration extends NE for a few kilometers. JMA reported that the eruptive activity continued on Nishinoshima with on July 25, 2020 at 3 p.m. a plume of brown ash at 4,400 meters above the crater, drifting north. On the Nasa worldview satellite image a discoloration of the water was visible. Sentinel-5P / Tropomi detected a strong sulfur dioxide signal near Nishinoshima, with 24.16DU of SO2 at an altitude of 8.12 km. Based on satellite data and pilot observations, the Tokyo VAAC reported that during 16-21 July ash plumes rose to 3.7-6.4 km (12,000-21,000 ft) a.s.l. and drifted N, NE, and E. Satellite data showed a sulfur dioxide plume reaching the western USA on 18 July, after traveling over 9,000 km from Nishinoshima. JMA scientists observed Nishinoshima from a ship on 11 July. They reported that a large amount of ash was emitted from the summit crater; plumes rose about 1.7 km and drifted W, dropping ash into the sea. Deposits of large blocks at the foot of the cone were visible. Lava fountains that rose 200 m above the crater were observable at night, along with lightning in the ash plumes. The cone had grown to about 200 m, about 40 m higher than an estimate on 1 December 2019. The report stated that ships should stay at least 2.5 km away from the cone. VAAC Tokyo and Mirova reported that a slight thermal anomaly remained , but has decreased considerably since July 10th, when it was noted at VRP 1340 at 473 MW, against VRP 91 at 8 MW on July 11th. The extension of the plume is centered around the island, with a moderate drift towards the northeast. Eruptive activity is still continuing with an ash plume and sulfur dioxide emissions, seen by satellites, and reported by the VAAC Tokyo. Mirova always reported high to very high thermal anomalies between July 8th and 10th, between VRP 304 and 1811 MW. As of the 8th of July, Thermal anomalies always remain very high to high according to Mirova. External activity is characterized by the emission of ash plumes and vapors / gases as in the previous days. On the Sentinel-5P / tropomi satellite images, a strong sulfur dioxide signal can be detected, with 16.84 DU of sulfur dioxide at an altitude of 9.73 km.VAAC Tokyo continues to issue ash dispersal notices (According to VAAC. 1FL = 100 feet = 30.5 meters). JMA reported on July 4, 2020 at 3 p.m. a plume of gas and ash rose to 7,100 meters asl., drifting towards the west. Satellite images showed a strong sulfur dioxide signal which can be detected, with 16.04 DU of sulfur dioxide at an altitude of 8.02 km. The thermal anomalies noted by Mirova have remained intense in recent days. The JMA announced on July 4 a volcanic plume of 8,300 meters high in Nishinoshima, against the more than 3,400 meters observed by the Japan Coast guards on June 29.In the SAR intensity image of July 3, changes in the topography, which would be caused by lava, etc., were observed on the southwest and west sides of the pyroclastic cone, and the coastline changes on the south-west side of Nishinoshima.In addition, the diameter of the pyroclastic cone increased approximately 1.5 times from June 19, and topographic changes on the southern slope are visible. From the north side to the east side of the pyroclastic cone, there is a decrease in the intensity of reflection, which would be due to the fall of the ashes. NASA images show that SO2 emission from the Nishinoshima volcano eruption still cover much of the North Pacific on July 3. Part of the SO2 has dispersed through the Aleutian Islands and Alaska to the Chukchi and the seas of eastern Siberia, above 70 ° North.An overflight of the island by the Japan Coast Guards on June 29 revealed an activity that remained significant, with explosions of incandescent materials, a plume of black ash rising to more than 3,400 meters, and significant modifications at the top and on the southwest flank of the slag cone / Scoria hill. Following the current activity, part of the cone has collapsed and oxidized projections are visible along the coast. In addition, the lava now flows to the southwest.VAAC Tokyo reports this June 26th at 12h Z that ash emissions continue in Nishinoshima. Confirmed at an eastward flight altitude of 100 / Himawari-8 satellite data. A strong sulfur dioxide signal was detected on June 26 from 38.72 DU of SO2 at an altitude of 7.1 km northeast, via Sentinel- 5P / Tropomi. Activity on Nishinoshima remains significant; very high thermal anomalies are reported by Mirova between VRP 1437 and 2479 MW on June 24, 202. VAAC Tokyo has issued a new ash dispersion advisory to the northeast. The ongoing activity on Nishinoshima continues, more intense in June than in May. Thermal anomalies are reported by Mirova and Himawari-8, described as high to very high from June 21 to 23. On June 16, an ash cloud was observed heading east. On June 21 and 22, a plume of sulfur dioxide was spotted by Sentinel - 5P / Tropomi, associated with the effusive eruption. It extended in the troposphere over 5,000 km on June 22. The effusive activity modifies the morphology of the island, as indicated by the SAR images put online by GSI. VAAC Tokyo reported that on June 16, with a brown-black plume emitted at about 2,000 meters, doubled with plumes of gas and vapor emitted by lava flows and their entry into the sea. JMA reported that the activity of Nishinoshima does not weaken, with many high thermal anomalies on June 11 and 12, 2020, listed between 46 and 578 MW. The last overview by the Japan Coast Guards on June 7 shows an intense gas and ash emission activity at the crater of the pyroclastic cone, as well as the plumes of gas and vapor emitted by the arrival of lava at sea. An overview was conducted by the Japan Coast Guards on May 18, 2020. When approaching the island, the summit activity was accompanied with degassing due to the arrival of lava at sea.Strombolian explosions produced a plume of ash, and ejected materials on the blanks of the pyroclastic cone. On the thermal image, It was possible to see that the lava flowing from the effusive vent on the southwest flank of the cone is divided into two arms, one of which formed a delta at the entrance to the sea. Activity appears to be continuous, slightly up on April 29, 2020 overview The japonaise Coast Guard carried out an overview by the Japan Coast Guards on April 29, 2020. The surface of the slag cone has been renewed and deposits of sulfur can be seen in places on the northeast surface of the cone. Although it cannot be seen from the front of the image, it appears that the collapsed crater southwest of the summit that appeared on April 19 has been buried again. Between April 29 and the previous sighting on April 19, there was obviously a good activity. Thermal images are also interesting. Although the exit is the same, you can see the lava flow move clockwise through the pyroclastic cone and head south. A beautiful fan of lava in the north direction, and a flow to the east coast consists of three arms. The Japanese Coast Guard flew over Nishinoshima (Ogasawara Islands) on March 9, confirming that the gray plume emitted reached an altitude of about 1,000 meters. The lava flows on the northeast flank of the crater for about 1 km to the north shore before flowing into the sea, where a plume of gas and vapor was visible. Mirova has noted thermal anomalies, when the cloud cover does not prevent measurements, between 79 and 314 MW, for the period from 09 to 11.03.2020. As of the 3rd of March, GSI site reported topographic changes due to lava were observed on the north and east sides of the pyroclastic cone, and changes in the coastline are observed on the side North of the island. In addition, a new topographic change was observed on the southwest side of the pyroclastic cone, which would be caused by lava. The thermal anomalies transmitted by Mirova between February 29 and March 2 range from 47 MW on March 1 / 4:15 a.m. and 338 MW on March 2 / 12:45 p.m. As of the 17th of February, JMA reported that the activity that resumed since December 20, 2019, continued actively with thermal anomaliestnoted by Mirova and SAR images testifying to flows which enlarge its surface.Eruptive activity continues on Nishinoshima, with thermal anomalies noted by Mirova, and reaching 425 MW on February 2 at 3:50 a.m. Regular GSI reports show the topographic changes caused by lava flows from the northeast to the east of the island between January 17 and 31. On January 26, 2020, the Operational Land Imager (OLI) on Landsat 8 captured this image of a plume of ash and vapor emanating from volcanic island of Nishinoshima. In this image, the infrared data is superimposed on a natural color image to highlight the active flows of the volcano. According to the Global Volcanism Program, the lava flows traveled northeast and entered the ocean, generating plumes of vapor near the shore. The Japan Coast Guards reported a continued increase in emissions from January 15 to 21 from the central crater. The Japan Coast Guard (JCG) reported that during an overflight of Nishinoshima conducted from 1335 to 1412 on 17 January surveyors observed continuous gray emissions rising from the central crater of the pyroclastic cone to 1.8 km (5,900 ft) a.s.l. and drifting E and NE. The central crater was open to the ENE; lava flows traveled NE and entered the ocean, producing steam plumes at the coastline. GSI reported that Synthetic Aperture / SAR Radar images on board the Japanese satellite DAICHI-2 (ALOS-2) provided by the GSI, show changes in the coastline to the NNE of Nishinoshima Island (Ogasawara Islands), between 3 and January 17, 2020, in connection with a lava flow from the cone.The thermal anomalies reported by Mirova oscillated between 7 and 268 MW on January 15-17, 2020 (note that they can be masked by cloud cover and interpreted accordingly). The eruptive episodes therefore continue well, with relative enlargement of the emerged part.According to recent news he morphological evolution of the cone and the contours of the island continues.The GSI reported a modification on both the NW and SSE coast on December 20, 2019, and a significant increasing on the NNE side on January 3, based on ALOS-2 satellite images.Moderate to high thermal anomalies were observed by Mirova. Previous news 2019 - As of the 16th of December, JMA reported that the strombolian activity continued and was characterized by the emission of a plume of ash, bombs, and feeded two flows from a vent near the summit of Scoria Hill, in a west and east direction. One of the lava flow reached the ocean with emission of gas and vapor. Thermal anomalies remained moderate but constant. The Japan Coast Guard (JCG) reported that during an overflight of Nishinoshima on 15 December surveyors observed that explosions were occurring from the main crater of the pyroclastic cone every second to several seconds. Blocks were ejected as high as 300 m above the crater rim; red hot blocks were scattered at the base of the cone. Gray plumes rose from the crater, and lava continued flowing E into the sea. A new crater had opened on the N flank of the cone and effused lava that flowed NW down to the sea. JMA expanded the marine exclusion zone around the island to 2.5 km the next day. JMA reported that the Nishinoshima Volcano, which has been calm since July 2018, has recovered explosive-effusive activity since 4 December 2019. The explosions are located at the main cone, and a vent that opened at the NE base of the cone produces spaterring and lava flows.This activity, in addition to the thermal anomalies recorded by satellite, was observed on December 6 during an overflight by the Japanese coastguard. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE. (GVN/GVP)

*********************************************************************************************************************************************************************************************************

Suwanosejima volcano (Japan)

USA - Kilauea volcano ( Hawaian islands)

September 15th, 2021

As of the 14th of September, HVO reported that following the recent intrusion of sub-surface magma in the area south of the Kīlauea caldera, which slowed significantly on August 30, earthquake rates and soil deformation in this area have remained close to levels of before the intrusion. Over the past week, 13 low-magnitude earthquakes, all less than M2.5, have been detected under the Kīlauea summit region. These earthquakes occurred approximately 1 to 3 kilometers (0.6 to 1.9 miles) below ground level near Halema'uma'u. There has been no noticeable seismic activity in the vicinity of the recent intrusion; since August 30, inclinometers have not detected any substantial ground deformation in the summit region. These observations suggest that the supply of new magma to the intrusion slowed or stopped. As of the 30th of August HVO reported that in the past 24 hours, around 98 earthquakes have been recorded at the top of Kīlauea and south of the Kīlauea caldera. Most of the earthquakes were below magnitude 2 and occurred about 1-4 km (0.6-2.5 mi) below the surface. These small earthquakes occurred up to 8 earthquakes detected per hour. These earthquake rates are significantly lower than those seen during pulses of activity last week.HVO reported that from the evening of August 26, soil deformation in the southern summit region of Kīlauea resumed at the highest rates seen during the first intrusive pulse spanning August 23 to 25. On the other hand, the current seismic activity remains low compared to the previous impulses of this intrusive activity. The East Rift Zone remains calm. The rate of soil deformation under the southern portion of the Kīlauea Summit region in Hawai'i Volcanoes National Park began to increase again on the evening of August 26 and continues to this time.HVO has detected a resumption of seismic activity and soil deformation below the southern portion of the Kīlauea Summit Caldera in Hawaii Volcanoes National Park. The rate of soil deformation started to increase again around 6:00 p.m. HST on August 26 and was followed by an increase in seismic activity after 8:30 p.m. The resumption of activity occurred at roughly the same location as the earthquake swarm of August 23-25, inside and south of the Kīlauea caldera. The combination of these observations indicates a second pulse of intrusive activity. No indication of upward migration of earthquakes to the surface or change in deformation that would indicate a shallow depth of source intrusive activity. As of the 25th of August, the US Geological Survey's Hawaiian Volcanoes Observatory has detected an increase in seismic activity beneath the southern portion of the Kīlauea Summit Caldera in Hawaii Volcanoes National Park.Activity began around 4:30 p.m. HST on August 23 and continued through the night and into the early morning hours of August 24, 2021. The swarm was accompanied by increased ground deformation recorded by the Sandhill inclinometer, just west of the site of the seismic swarm. The same incline increase was also recorded by the inclinometer near Uēkahuna Bluff and the site of the former HVO building.At around 1:30 am on August 24, the earthquake swarm intensified in this region; this activity may indicate a magma intrusion occurring 1–2 km (0.6–1.2 miles) below the southern caldera. More than 140 earthquakes were recorded at 4.30 a.m. on August 24; the largest recorded earthquake was magnitude 3.3 with the majority of earthquakes below magnitude 1. Small earthquakes continue at a rate of at least 10 detected earthquakes per hour.Seismicity and ground deformation indicate a small dyke intrusion may occur 1-2 km (0.6-1 .2 mi) below the southern caldera. Previously - As of the 13th of July, HVO reported that no surface activity has been observed by field crews or on webcam images since May 23, 2021. Seismicity has slowly increased in recent weeks in the summit region, with continued summit inflation in recent months . Summit tiltmeters have recorded two cycles of deflation-inflation over the past week, along with continued gradual inflation. Continuing inflation was also recorded by the summit's GPS instruments; however, the tilt and GPS movement pattern indicates that the center of inflation may have shifted slightly towards the southern part of the caldera.Seismicity has slowly increased in recent weeks, although it has yet to reach the levels seen immediately before the December 2020 eruption. Sulfur dioxide emission rates remain slightly high. HVO reported that  Kīlauea volcano is no longer erupting. No surface activity has been observed by field teams or webcam images since May 23, 2021. The surface of the lake is completely covered by a solidified lava crust. Seismicity has slowly increased in recent weeks in the summit region, with continued gradual summit inflation in recent months. Sulfur dioxide emission rates remain slightly high. As of the 11th of June, HVO rported that the surface of the lake in the Halama'uma'u Crater of Kilauea is now completely covered with a solidified lava crust. No surface activity or evidence of recent surface activity has been observed over the past week except for minor subsidence in the range of 1 to 2 meters (3 to 7 feet). Small, higher-temperature spots around the rim and in local cavities remain visible on the webcam thermal imaging, albeit at temperatures well below those associated with molten lava. As of the 26th of may, HVO reported that eruption in Halema'uma'u crater has stopped. The lava lake has a depth of 229 m. and stagnates over its entire surface. No active lava was observed from the fissure; field teams saw no signs of activity in the lava lake. Since the eruption began on December 20, 2020, more than 40 million cubic meters of lava have been emitted. HVO will continue to monitor changes. As of the 21st of May, HVO reported that the lava outflow from the west vent continues to feed the Halema'uma'u lava lake into the crater through a submerged entrance. Lava flow and intermittent crustal sinking are confined to a small basin with rare overflows, and lava has not seeped along the lake's perimeter over the past week. The total lake depth is 229m on May 20, 2021, measured by a continuous laser range finder over the western part of the lake near the western vent area, and is unchanged since May 11. The lava crust is stagnant and solidified covering 99% of the surface of the lake measured by thermal mapping on May 13. HVO reported that the W vent on the inner NW wall of Kilauea's Halema`uma`u Crater continued to supply the lava lake during 28 April-4 May through a submerged inlet. The depth of the lake was about 227 m and lava continued to circulate in the W part, though the active area continued to shrink. The E half of the lake remained solidified and comprised about 93 percent of the total area, based on thermal measurements acquired on 16 April. The sulfur dioxide emission rate was 250 and 475 tons/day on 30 April and 2 May, respectively, continuing a downward trend that began in mid-April; the recent rates suggested that the effusion rate had also decreased. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.HVO reported that the W vent on the inner NW wall of Kilauea's Halema`uma`u Crater continued to supply the lava lake during 21-27 April. Lava flowed at a low rate from the main vent into the lake through crusted-over channels and submerged inlets. The depth of the lake was about 226-227 m and lava continued to circulate in the W part, though the active area continued to shrink; the E half of the lake remained solidified. Lava sometimes overflowed the margins of the lake. The sulfur dioxide emission rate was 350, 550, 300, and 350 tons/day on 21, 22, 23, and 24 April, respectively. The rates were the lowest measured during the eruption, though elevated above the levels recorded in the months before the start of the eruption (20 December 2020). The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.HVO reported that the W vent on the inner NW wall of Kilauea's Halema`uma`u Crater continued to supply the lava lake during 14-20 April. Lava flowed at a low rate from the main vent into the lake through crusted-over channels and submerged inlets. The depth of the lake was about 226-227 m and lava continued to circulate in the W part, though the active area continued to shrink; the E half of the lake remained solidified. Lava sometimes overflowed the margins of the lake. The sulfur dioxide emission rate was 950 tons/day on 14 April. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. As of the 14th of April, HVO reported that the lava outflow from the West Vent continues to feed the lava lake in  Halema'uma'u Crater. The west vent constantly emits low flow lava through a crusted channel and a submerged inlet into the lake. Lava flow and intermittent crustal sinking continue in the western part of the lava lake, with lava seeping sporadically in areas along the perimeter of the lake. The total depth of the lake is 227 m. this April 14, 2021, measured by a continuous laser rangefinder on the active western part of the lake. Stagnant and solidified lava crust covers the eastern part of the lava lake and slowly grows westward. The most recent sulfur dioxide emission rate, measured on April 8, was 1000 t / day. This is high compared to the rates for the months before the eruption started on December 20 (less than 100 t / day), but lower than the pre-2018 lava lake emission rates (around 5,000 t / day) . .HVO reported that the W vent on the inner NW wall of Kilauea's Halema`uma`u Crater continued to supply the lava lake during 31 March-6 April. Lava flowed at a low rate from the main vent into the lake through crusted-over channels and submerged inlets. The total depth of the lake measured about 225 m and lava continued to circulate in the W part; the E half of the lake remained solidified and expanded toward the W. The sulfur dioxide emission rate was 1,200 tons/day on 1 April. HVO field crews observed weak spattering from two areas at the W vent during 1-2 April. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.HVO reported that the W vent on the inner NW wall of Kilauea's Halema`uma`u Crater continued to supply the lava lake during 24-30 March. Lava flowed from the main vent into the lake through two crusted-over channels and submerged inlets, the former of which occurred during 24-25 March. The total depth of the lake measured about 224 m and lava continued to circulate in the W part; the E half of the lake remained solidified, expanding toward the W. The sulfur dioxide emission rate was 950 and 650 tons/day on 22 and 26 March, respectively.HVO reported that two vents on the inner NW wall of Kilauea's Halema`uma`u Crater continued to supply the lava lake during 17-23 March. Lava flowed from both the main vent and a vent several meters NE into the lake through submerged inlets. Another lava flow emerged from about halfway up the cone structure starting at 0220 on 16 March, but had ended by the next day. The depth of the western part of the lake rose from about 221 m to 223 m and lava continued to circulate in that part. The E half of the lake remained solidified and lower that the W half, with the crusted E half expanding towards the W. The sulfur dioxide emission rate was 650, 700, and 1,100 tons/day on 17, 18, and 19 March, respectively. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.HVO reported that vents on the inner NW wall of Kilauea's Halema`uma`u Crater continued to supply the lava lake during 10-16 March. Lava flowed from both the main vent and a newer vent several meters NE into the lake through submerged inlets. Another lava flow emerged from about halfway up the cone structure starting at 0220 on 16 March. The depth of the western part of the lake rose from 221 m to 222 m and lava continued to circulate in that part. The E half of the lake remained solidified and lower that the W half, with the crusted E half expanding towards the W. The sulfur dioxide emission rate was 900 tons/day on 14 March. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. HVO reported that a small lava pond developed near the western fissure during 5-7 March. On 7 March at about 13:00 local time a levee of the pond started to collapse allowing the pond lava to drain into the main lake. The lake has developed a subtle levee on its south margin (just below the center of the photo), with several lava streams cascading down onto the lower level on the eastern end of the levee. A new lava flow was active north of the normal lava flow entering the lake. This new lava flow was perched above the lake surface, and fed a narrow channel entering the lake. The new stream was set within a collapse scar that resulted from the collapse of a small lava pond.HVO reported that lava from the West Vent continues to feed the lava lake in Halema'uma'u Crater. The active western half of the lava lake measured approximately 217 m. depth, measured by a remote laser rangefinder on the morning of February 27, 2021. Observations yesterday afternoon indicated that lava effusion continues at the western fissure. The lava quickly develops a thin crust as it flows outward to the east with occasionally a crust sinking between the vent and the main island, but not beyond the island. HVO reported that a vent on the inner NW wall of Kilauea’s Halema`uma`u Crater continued to supply the lava lake during 17-23 February. The depth of the western part of the lake fluctuated between 215 and 218 m and the lake surface actively overturned at “plate” boundaries. The sulfur dioxide emission rate was elevated at 1,000 tons/day on 19 February.As of the 17th of February, HVO reported that lava activity remains confined to Halema'uma'u Crater, with lava erupting from a vent on the northwest side of the crater. As of the morning of February 16, the active western half of the lava lake was approximately 216.5 m deep. The small decrease in depth since yesterday coincides with the current deflation. During the last day, lava effusion continued at the western fissure, with the lava rapidly developing a thin crust and flowing eastward. A few oozing lava flows were noted along the northern and eastern margins of the otherwise stagnant eastern part of the lake. The position of the main island has not changed; as measured on February 12, the southern end of the island was 9 m. above the surface of the lava lake, with the highest point at 21 m. above the surface. All the other islands remain stationary, frozen in the stagnant eastern part of the lava lake. SO2 emission rates remain high. The most recent measurements of sulfur dioxide emission rates from February 12 are around 1,100 t / d, which is lower than the pre-2018 lava lake emission rates (around 5,000 t / d). Summit tiltmeters show that slight deflation continues this morning. Seismicity remains high but stable, with high earthquakes and a few minor earthquakes. HVO reported that as of the morning of February 11, the lava in the active potion west of Halema'uma'u lake was about 215m deep, with the eastern part of the lava lake solidifying on the surface. Summit tiltmeters show inflationary tilt continuing over the past day. Sulfur dioxide emission rate measurements taken on February 10 were approximately 1,600 t / d, below the range of pre-2018 lava lake emission rates. Seismicity remains high but stable, with high earthquakes and a few minor earthquakes. HVO reported that eruptive activity continues at the western fissure, supplying lava to the lava lake via a lava stream at the entry site along the western margin. Yesterday 9th of February, geologists reported a small active dome fountain at the entrance site. The active surface lava remains largely confined to the western half of the lake, as before. The western part of the lake continues to present scattered crustal shipwrecks. The stagnant eastern part of the lake was several meters lower than the perched, elevated and active western part. A series of surface cracks separate the asset from the stagnant part of the lake. The islands remained stationary last week. As of the morning of February 9, the lava in the western and active part of Halema'uma'u Lake was about 215 m (705 feet) deep, with the eastern part of the lava lake solidifying on the surface. SO2 emission rates remain high. HVO reported that on the morning of February 6, the lava in the western, active part of Lake Halema'uma'u was about 211 m (692 feet) deep, with the eastern part of the lava lake solidifying on the surface. SO2 emission rates remain high. As hot gases rise from the western vent of Halema'uma'u, the cooler temperatures of the atmosphere cause the water vapor to condense, creating a flammagenitus / pyrocumulus cloud over the Kīlauea lava lake .HVO reported that lava activity is still confined to Halemaʻumaʻu with lava erupting from a vent on the northwest side of the crater. On the morning of February 2, the lava lake is about 213 meters deep, and only the western part of the lava lake is active. SO2 emission rates remain high. The summit inclinometers are on an inflationary trend. Seismicity remains high but stable, with regular high earthquakes and a few minor earthquakes.HVO reported that lava activity is still confined to Halemaʻumaʻu with lava erupting from a vent on the northwest side of the crater. On January 28 afternoon, lava filled about 209 m of Halema'uma'u crater and only the western part of the lava lake is active. Sulfur dioxide emission rate measurements taken on January 23 were approximately 2,200 t / d, below the range of lava lake emission rates before 2018. The summit inclinometers are on an inflationary trend. Seismicity remains high but stable, with high and regular earthquakes and a few minor earthquakes. HVO reported that active western half of the lava lake was about 205m deep this morning on January 25, while the stagnant eastern half of the lake remains several meters below. The entire lava lake - including the stagnant eastern half - is perched / high above the crust between the perched lake and the crater wall. The east side is elevated about 1 m and the west side 4 m above the solidified lava crust adjacent to the crater wall. All of the islands have remained stationary for the past week, frozen in the stagnant eastern part of the lava lake. The dimensions of the main island have remained unchanged with its edges several meters above the surface of the lake. On January 22, the southern end of the island was measured at 12 m. above the surface of the lava lake, the highest point at 23 m. above the surface. HVO reported that lava activity is still confined to Halemaʻumaʻu with lava erupting from a vent on the northwest side of the crater. Low-level fountaining from the west vent feeds a lava channel that drains into the lava lake in Halema'uma'u Crater. The active western half of the lava lake was around 205m deep as of January 23, while the stagnant eastern half of the lake remains several meters below. The entire lava lake - including half that is stagnant - is perched / elevated at least 1-2m above the crust between the perched lake and the crater wall. HVO reported that the west vent feeds a lava channel that drains into the lava lake inside Halema'uma'u crater. The most recent sulfur dioxide emission ratio was 2.50 tonnes / day on January 16. The active western half of the lava lake was about 202 m deep on the morning of January 20, while the stagnant eastern half of the lake remains several meters lower. The entire lava lake - including half of it is stagnant - is perched / elevated at least 1-2m above the crust between the perched lake and the crater wall. HVO reported that lava activity was still confined to Halemaʻumaʻu crater, with lava erupting from a vent on the northwest side of the crater. On morning, January 15, the lava lake has a depth of about 199 m and remains stagnant on its eastern half. SO2 emission rates remain high. The low fountain in the west vent feeds a lava channel that drains into the lava lake at Halema'uma'u Crater. The active western half of the lava lake was about 199m deep on January 15, while the stagnant eastern half of the lake remains several meters below. The entire lava lake - including half of it stagnant - is perched at least 1-2m above the crust between the perched lake and the crater wall. All of the lava lake islands have been stationary for the past week as if frozen in the stagnant parts of the eastern lava lake. The dimensions of the main island have remained unchanged with its edges several meters above the surface of the lake. HVO reported that lava activity was still confined to Halemaʻumaʻu with lava erupting from a vent on the northwest side of the crater. On morning, January 14, the lava lake was about 199 m (653 ft) deep and remains stagnant over its eastern half. Yesterday afternoon, summit tiltmeters started registering an inflationary tilt. Seismicity remains high but stable, with regular earthquakes and a few minor earthquakes. HVO reported that on morning of January 12 the lava lake was about 196m deep below the west vents, while the stagnant eastern half of the lake was about 4m shallower. The eastern part of the lake seemed to have sagged beneath its perched edges. Overall, the size of the active and inactive parts of the lake has remained the same. The lake was still perched at least 1-2m above the inactive crust between the perched lake and the crater wall which was also rising.As of the 11th of January HVO reported that the lava activity was confined to Halema'uma'u with lava erupting from vents on the northwest side of the crater. on the morning of January 10, the lava lake was about 196 m deep under the western vents while remaining stagnant on its eastern half. SO2 emission rates are still high and the most recent measurements of the sulfur dioxide emission rate of 2,300 t / d on Sunday. The western vents showed a stronger flow from January 10 afternoon with splash and lava flows fueled by splashing from the top of small cones abutting the northwest wall of Halema'uma'u crater. Lava also flowed from the western vents into the lake through an encrusted channel. All of the islands have been stationary for the past day, like frozen in the stagnant parts of the eastern lava lake. The dimensions of the main island have remained unchanged with its edges several meters above the surface of the lake. HVO reported that the lava lake was 194 m deep on January 6th and had a volume of over 27 million cubic meters (35 million cubic yards). The most recent heat map (January 5) indicated that the dimensions of the perched lake were 760 by 520 m. for a total area of ​​28 ha - slightly smaller than December 30 when the map was made. Tuesday (January 5), the lake was perched about 1 to 2 m. above its narrow edges; the overflow on the narrow edge slowly raised a low wall around the lake similar to the wall around an above ground swimming pool.The HVO's flyby over Halema'uma'u on January 5, 2021 showed the newly exposed lava channel entering the lava lake. Lava also continues to enter the lava lake through the tube, which produces the small domed fountain at the margin of the lake below (lower center). As of the 4th of January, HVO reported that the situation was slowly changing. West vents emitted spatters from two places atop a small cone stuck to the northwest wall of Halema'uma'u crater.The lava also emerges as a small domed fountain in front of the west vents, probably from a submerged part of the vent. Sulfur dioxide emissions remain high, with a ratio of 4,400 tonnes per day (January 1). The lava lake was 190 m deep on Sunday afternoon (January 3) and a volume of 26 million cubic meters. It is now perched about a meter above its narrow edges measured yesterday morning (January 3); the overflows on the narrow edge have raised a low wall around the lake that looks like an above ground swimming pool. HVO reported that the West Vent of Halema’uma’u Crater continues to erupt without significant change in recent days. An incandescence was visible from the skylights above the vent and occasional splashes are ejected from these skylights. A weak spattering slowly formed a cone at the vents. The lava channel, which crusted several days ago, continues to supply the lake with lava, and the place where the lava is rising was marked by incandescent fine lines at night. HVO reported that the western vents of Halema'uma'u crater showed spatttering, and feed a lava flow through lava tunnels towards the lake; It continues to widen slowly, its depth reached 186 meters in the afternoon of December 31st, 2020. Sulfur dioxide emission ratios remain high, with 4,500-5,000 tonnes per day. The seismicity remains high, but stable, marked by a high tremor and some earthquakes. The main island of colder, solidified lava floating in the lava lake moved faster westward, as if searching for the western lava source filling the lake, while the other 10 small islands remained relatively stationary around the east end of the lake. The main island measured about 250 m. in length, 135 m. wide and about 3 ha. area according to the heat map of December 30. The measurements on Wednesday evening (December 30) show that the surface of the island was about 6-8 m. above the surface of the lake.HVO reported that the lava lake of Kilauea has changed little in recent days: Erupting lava at the active west vent flows along the lava channel encrusted for the most part over 130 feet in the surface of the lava lake, while in At the top of the fissure, the vents cycle between weak lava fountains and periods of strombolian activity, exhibiting spattering. The lava lake has a depth of 181 meters, for a volume of about 23 million m³. Sulfur dioxide emissions have fallen a little (3,300 tonnes / day), but still remain high. A slight deflationary signal is observed on 30 december, while the seismicity is high and stable, marked by a large tremor and some minor earthquakes. HVO reported that lava activity was still confined to Halemaʻumaʻu crater with lava erupting from a vent on the northwest side of the crater, by two or three narrow channels visible on December 28 morning. As of the 27th of December, HVO reported that the lava lake in the Halemaʻumaʻu crater of Kilauea has changed little over the past day and was about 177 m (581 feet) deep and about 408 m (1340 feet) below the southern edge of Halemaʻumaʻu on the morning of December 27). The volume of the lake remained around 21 million cubic meters (27 million cubic yards or 4.8 billion gallons). The most recent heat map indicated that the dimensions of the lake were 790 by 520 m (864 by 569 yds) for a total area of ​​29 ha (72 acres). The narrow ledge (10-30 m or 11-22 yd) around the lake was about 1-2 m (1-2 yds) above the active surface of the lake, suggesting that the surface of the lake dropped during of the last 2 days. As of the 26th of December, HVO reported that the lava activity remained confined to Halemaʻumaʻu from two vents on the north and northwest sides of the crater. At 2 p.m. yesterday, the crater lake was still 176m deep and the lake level appeared to be 2m. lower, leaving a narrow black rim around the northern edge. Early this morning, the west vent re-activated as the north vent calmed down and began to drain the lake. Reduced SO2 emissions were measured last night. The north vent continued to erupt lava into a lake inside Halema'uma'u Crater. The west vent was glowing until about 2:40 a.m. this morning (almost coinciding with the change from a deflationary tilt to an inflationary summit tilt) when it became vigorously active with up to 3 narrow lava streams in the lake. After 3 a.m., the north vent calmed down and began to slowly drain lava from the lake, and the volume of the lava lake remained around 21 million cubic meters. As of the 25th od December HVO reported that there was no significant change at the summit crater of Kilauea : lava activity remains confined to Halemaʻumaʻu from two vents on the north and northwest sides of the crater. At 7 a.m. on December 25, the growing crater lake was 176 m (577 feet) deep. The high SO2 emissions continued. Two vents continued to erupt on the north and northwest walls of Halemaʻumaʻu. The west vent, located on the lowest block of Halemaʻumaʻu Crater, splashed intermittently. The north vent remains the most vigorous and is slowly flooded by the rise of the lake.The vents continued to supply lava to a rapidly expanding lake filling Halema'uma'u Crater. As of early Christmas morning, the lake was 176m deep - an increase of 6m from the previous 24 hours. The volume of the lava lake on the morning of December 25 was approximately 21 million cubic meters. A colder, solidified lava island in the lava lake has become smaller and is slowly drifting northeast into the lake. It is approximately 260m in length and 115m in width according to the heat map of December 23rd. HVO reported that on the afternoon of December 23th, HVO field crews noted that the surface of the summit lava lake of Kīlauea is now 143 m deep, with an approximate volume of 12 million cubic meters. (summit webcams). The area was about 22 ha and the shape of the lake is roughly oval with an east-west length of 690 m and a north-south width of 410 m. A smaller, coolder, solidified lava island has drifted east into the lake over the past 24 hours. (photos and video). It seems to have about 150 m in diameter. The fountaining continues in 2 places, more vigorously at the east vent, feeding the growing lava lake. Summit tiltmeters continued to record a constant deflationary tilt. Sulfur dioxide emission rates remain high, estimated at around 30,000 tonnes / day, measured on Monday, December 21st. SO2 emissions continue. Seismicity remained high but stable, with a few minor earthquakes and fluctuations in tremor related to the vigor of the fissure fountain.As of the 22nd of December, HVO reported that not significant change occurred. Kīlauea continues to erupt at its summit from at least two vents on the north and west sides of Halemaʻumaʻu. On the morning, the growing crater lake was 487 m (1,598 ft) below the crater rim, indicating that the lake has filled 134 m (440 ft) of the bottom of the Halemaʻumaʻu rater. Summit tiltmeters continued to record slowing deflationary tilt through this morning. Sulfur dioxide emission rates remain high estimated at around 30,000 tonnes/day. Seismicity is elevated but stable the last day, with few earthquakes and tremor fluctuations related to the vigor of fissure fountaining. When measured last night, the Halemaʻumaʻu lava lake was 487 m (1,598 ft) below the crater rim and rising at more than 1 m/hr (3 ft/hr). Of the three vents that initially erupted from the north and northeast walls of Halemaʻumaʻu, only two remain active, with the middle vent pausing eruptive activity between approximately 7:30 and 8:00 a.m. HST. The middle and west vents, which are located on the lowest down-dropped block within Halemaʻumaʻu crater, have since been inundated by the growing lava lake. The farthest east vent remains the most vigorous. As of early this morning, a preliminary calculation of volume suggests that, since the start of the eruption, approximately 10 million cubic meters of lava have been erupted (equivalent to over 2 billion gallons). This is a surface area of about 33 acres. As of the 21st of December, HVO reported that activity over the past ten hours has been characterized by three fissure vents on the north and northwest walls of Halema'uma'u Crater. The lava fountain at these vents is estimated to measure up to 25m. height; the vents feed the lava flows into the base of Halema'uma'u Crater, which is being filled with a growing lava lake. No major changes at 4:09 am HST on December 21, 2020. The fountain on the north inner wall of Halema'uma'u crater is dominant, with a weaker fountain emitted from the cracks to the west. The lava lake continues to rise and grow slowly and began to flood the base of the fallen blocks in the Kīlauea caldera during the summit collapse events of 2018. The gas plume continues to ripple and drift to south-west. Just after 6 a.m. HST on December 21, 2020, the middle crack stopped; the main weakest eastern and western cracks remain active. Lava continues to fill Halemaʻumaʻu, and volcanic gas and glass (Pelé's hair) move in the wind. The lava lake has risen at about several meters per hour since the eruption began. The current lava lake has a circulating perimeter, but a stagnant center. The event was accompanied by only moderate amounts of warping, indicating the deflation of a magma reservoir beneath Halema’uma’u. The tilt rates have decreased slightly since the onset of the eruption. The eruption is currently confined to the Halemaʻumaʻu crater. HVO reported that a seismic swarm began on the evening of December 20th in Kilauea, accompanied by ground deformation detected by inclinometers. Shortly after approximately 9:36 p.m. HST on December 20, the USGS Hawaiian Volcano Observatory (HVO) detected a glow in Halema'uma'u Crater at the top of Kīlauea Volcano.An eruption has started in the summit caldera of Kīlauea. The situation is changing rapidly and the HVO will issue another statement when more information becomes available. According to the first data, that is a small eruption limited to the caldera. As a result, the HVO raised Kīlauea's volcanic alert level to WARNING and its aviation color code to RED. Previously, HVO reported that Kīlauea Volcano is not erupting. Monitoring data for the month of June show variable but typical rates of seismicity and ground deformation, low rates of sulfur dioxide emissions, and only minor geologic changes since the end of eruptive activity in September 2018. Water was first observed at the summit of Kīlauea Volcano, within Hawai‘i Volcanoes National Park, one year ago. Since then, the body of water has slowly deepeaned and grown in size. The Hawaiian Volcano Observatory continues to monitor the lake, Kīlauea Volcano remains at alert-level NORMAL and aviation color-code GREEN. HVO published May Monthly summary about the activity of the Kīlauea volcano, which is not erupting. Monitoring data for May shows variable but typical rates of seismicity and soil deformation, low rates of sulfur dioxide emissions and only minor geological changes since eruptive activity ended in September 2018 . Seismicity rates during the month were about 25% lower than last month. Sulfur dioxide emission rates are low at the top and below the detection limits at PuʻuʻŌʻō and in the lower East Rift Zone. The crater lake at the bottom of Halema'uma'u continues to expand and deepen slowly. As of June 3, the depth of the lake was approximately 36 meters. A certain amount of sulfur dioxide is dissolved in the summit lake and work is continuing to try to quantify this process. HVO reported that monitoring data for February showed variable but typical rates of seismicity and soil deformation, low rates of sulfur dioxide emissions and only minor geological changes since the end of activity eruptive in September 2018. The pond of acid water at the bottom of Halema'uma'u continues to expand and deepen slowly. In early March, the dimensions of the pond were approximately 100 meters by 200 meters. The current depth is around 28 meters. As of the 6th of February, HVO reported that the seismicity rates during the month were variable but remain in the long-term values. Sulfur dioxide emission rates are low at the top and below the detection limits at Puʻu ʻŌʻō and in the lower East Rift zone. The pond at the bottom of Halema'uma'u, which began to form on July 25, 2019, continues to expand and deepen slowly. At the beginning of February, the dimensions were: 95 meters by 194 meters. The current depth is around 25 meters.PREVIOUS NEWS 2019 - As of the 5th of December, HVO reported monitoring data continue to show steady rates of seismicity and ground deformation, low rates of sulfur dioxide emissions, and only minor geologic changes since the end of eruptive activity in September 2018. Monitoring data have shown no significant changes in volcanic activity during November. Over the past month, about a dozen DI events occurred beneath the summit. Seismic stations detected over 1800 earthquakes in the vicinity of the volcano, which is an increase of ~10% from last month. Rates of seismicity are relatively consistent throughout the month, although at the summit, episodic increased rates appear to be coincident with the inflated phase of the DI events. Sulfur dioxide emission rates are low at the summit and are below detection limits at Puʻu ʻŌʻō and the lower East Rift Zone. The pond at the bottom of Halema'uma'u, which began forming on July 25, 2019, continues to slowly expand and deepen, and the most recent measurements are 162 meters in the east-west direction and 73 meters in the north-south direction. HVO reported that the crater lake of Halema'uma'u continues to grow; its level is measured on October 19 at 608 meters under the observation site. The steam that sweeps its surface testifies to the high temperature of the water, and the winds at the bottom of the crater. The refill is marked by areas of bluish color on a general tint of the surface of greenish yellow color. HVO reported that a recent flyover of the Pu'u O'o 'crater in the eastern rift zone of Kilauea allowed a good visualization of the bottom of the crater, drained after 35 years of eruptions. The rubble from the collapse of the crater walls filled much of its deepest part, the bottom being now about 250 meters (820 feet) below the eastern ledge. As of the 2nd of August HVO reported that the seismicity and strain ratios remained stable; low emissions of sulfur dioxide since September 2018. Insight from July 25, 2019, a green pond marks the floor of Halema'uma'u, at about 540 meters above sea level. HVO scientists flew over the summit of Kilauea in the morning of 1 August and confirm the presence of water at the bottom of Halima'uma'u crater. Observers saw reflections from the green pond. The pond has clearly expanded since the oldest photos made on July 25th. Previous news - As of the 22nd of May, HVO reported that no significant change occurred over the past week in Kilauea volcanic activity, in normal volcanic alert / green aviation code.Since the beginning of March, tiltmeters have recorded a modest inflationary trend at the top, confirmed by GPS and InSAR measurements; it is interpreted as a magmatic accumulation in the shallow portion of the summit magmatic system, 1-2 km deep.Other measurements show the filling of the magma reservoir of the deep East Rift Zone in a large area between Pu'u O'o and Highway 130, since the end of the 2018 eruption. The HVO continues to monitor Kilauea's seismicity, deformation and gas emissions closely, to detect an increase in its activity. As of the 20th of March, HVO reported that over the past week, volcanic activity has not changed significantly.Low levels seismicity persisted on the volcano, with earthquakes occurring mainly in the summit and south flank regions. GPS stations and inclinometers continue to display movements consistent with deep magma reservoir filling in the East Rift Zone. Sulfur dioxide emission rates from the summit and Pu'u'u'ō remain low. These rates have been stable for several weeks. HVO reported that rates of seismicity, deformation, and gas release have not changed significantly over the past week. Low rates of seismicity continue across the volcano, with earthquakes occurring primarily in the summit and south flank regions. GPS stations and tiltmeters continue to show motions consistent with refilling of the deep East Rift Zone. These rates have been steady over the past several weeks. At Kilauea's summit, tiltmeters are showing deflationary tilt consistent with the beginning of a Deflation-Inflation event (D-I event); these types of events have been commonly observed at the summit for several years. Sulfur dioxide emission rates from the summit and Puʻu ʻŌʻō remain low. As of the 15th of January 2019, HVO reportede that rates of seismicity, deformation, and gas release have not changed significantly over the past weeks. Deformation signals are consistent with slow magmatic recharge within the middle East Rift Zone (ERZ).Low rates of seismicity continue across the volcano, with events occurring primarily in the summit and south flank regions. Slow inflationary tilt continues in the middle ERZ. Sulfur dioxide emission rates have been below detection limits in the LERZ since early September, though minor amounts of volcanic gas are still present. Sulfur dioxide emission rates from the summit and Puʻu ʻŌʻō remain low. Previously,HVO reported that no more active lava observations since September 4th, 2018 on the basis of the criterias of GVN program, the phase of the eruption on the Lower East Rift Zone can be considered to be over .Kilauea remains an active volcano, and geophysical data continues to show movements in the magmatic system, including a recharge of the East Rift Zone. As of the 30th of October, HVO reported that Kīlauea Volcano is not erupting. Rates of seismicity, deformation, and gas release have not changed significantly over the past week. Deformation signals are consistent with refilling of the middle East Rift Zone.HVO monitoring during the past week shows low rates of seismicity at the summit and East Rift Zone (ERZ). Earthquakes continue to occur primarily at Kīlauea's summit area and south flank (magnitude-3.8 was the largest) with continued small aftershocks of the magnitude-6.9 quake on May 4, 2018. Seismicity remains low in the lower ERZ. In the ERZ, tiltmeters near Puʻu ʻŌʻō and farther east continue to record an inflationary trend, consistent with refilling of the middle East Rift Zone. At the summit, tiltmeters have recorded a slight inflationary trend. Sulfur dioxide gas emissions at the summit averaged 50 tonnes/day as reported on October 24, and 75 tonnes/day at Puʻu ʻŌʻō on October 23. There was no sulfur dioxide detected by our instruments in the lower ERZ. Previously, HVO bulletin ( 3rd of october) reported that On Volcano's lower East Rift Zone (ERZ), no significant incandescence was visible overnight within the fissure 8 cone. Minor fuming from the cone was visible during the past day. Webcam images of the fissure 8 cone show that a portion of the crater wall near the northern spillway area has slowly shifted during the past 2 weeks, indicating some instability of the cone in this area. As of the 2nd of October, HVO reported that no significant incandescence was visible overnight in the collapse pit within the fissure 8 cone. Minor fuming has been visible during the day. On the middle ERZ, a rockfall at Puʻu ʻŌʻō produced a small ash plume around noon yesterday, October 1. Seismicity and ground deformation remain low at the summit of Kīlauea. Rates of tilting throughout both the summit and the ERZ are much lower than those observed during the recent period of major eruptive activity. As of the 25th of September HVO reported that on Kīlauea Volcano's lower East Rift Zone (LERZ), no significant incandescence was visible overnight in the collapse pit within the fissure 8 cone. Minor fuming is visible during the day. Seismicity and ground deformation remain low at the summit of Kīlauea. HVO reported minor incandescence from a collapse pit in the central part of Kilauea’s Fissure 8 cone during 12-15 September, and that small amounts of fuming rose from a small spatter cone located towards the back of the Fissure 8 cone during 12-18 September. Seismicity and ground deformation remain low at the summit, and aftershocks from the M 6.9 earthquake in early May were located along faults on the south flank. The combined rate of sulfur dioxide emission from the summit and the LERZ (less than 1,000 tonnes/day) were lower than any time since late 2007. Small collapses at Pu'u 'O'o Crater during 12-14 September generated visible dust plumes. The Volcano Alert level l remained at Watch and the Aviation Color Code remained at Orange. HVO bulletin (11th of September) reported that on Kīlauea Volcano's lower East Rift Zone (LERZ), minor amounts of incandescence were observed overnight from a collapse pit within the fissure 8 cone, though the amount was reduced over observations from the previous night. Very minor fuming is visible from a small spatter cone located towards the back of the cone. Small lava flows have been observed within the fissure 8 cone, however none have extended outside the walls of the cone. Seismicity and ground deformation remain low at the summit of Kīlauea. Aftershocks from the magnitude-6.9 earthquake in early May are still being generated on faults located on Kīlauea's South Flank. Small collapses continued to occur yesterday at Puʻu ʻŌʻō crater, but are much less frequent than they were over the previous two days. As of the 7th of September, HVO reported that lower East Rift Zone (LERZ), no incandescence was visible at fissure 8 from helicopter overflight or UAS (drone) views this morning. Small lava flows have been observed within the fissure 8 cone, however none extend outside the walls of the cone. There is no change in overall activity from observations over the past several days. As of the 5th of September, HVO reported that seismicity remains low and ground deformation is negligible at the summit of Kīlauea Volcano. A magnitude-3.1 earthquake that occurred at 5:31AM HST this morning was located below Kīlauea's South Flank and is likely an aftershock of the magnitude-6.9 earthquake from early May. On the volcano's lower East Rift Zone (LERZ), no incandescence was visible on the fissure 8 spillway overnight. Images from the UAS (drone) crew showed that weak lava activity continues in the fissure 8 cone as of yesterday afternoon, with no lava extending outside the walls of the cone and no flows heading down the spillway. HVO reported that on 2nd of September, seismicity remained low and ground deformation is negligible at the summit of Kīlauea Volcano. Earthquakes, probably aftershocks of the magnitude-6.9 earthquake in early May, continue on South Flank faults. On the volcano's lower East Rift Zone (LERZ), incandescence was observed in the fissure 8 cone yesterday afternoon (09/01) with reports of activity extending into early evening. In addition to a persistent spot of spattering, lava slowly covered the 65-by-15 m (210-by-45 ft) crater floor by evening. Webcam views showed weak incandescence occasionally reflected on the eastern spillway wall from the crater overnight suggesting that the lava in the crater remained active. This morning, ground crews have no view of the crater inside the fissure 8 cone, but report the fissure 8 cone is quiet when viewed from a safe distance with no visible fume. Sulfur dioxide emission rates at the summit, Puʻu ʻŌʻō, and LERZ are drastically reduced; the combined rate (< 1,000 t/d) is lower than at any time since late 2007. Friday (08/31), LERZ emission rates were still too low to measure. HVO reported that during an overflight on 25 August a small lava pond was visible deep within the vent at Kilauea's Fissure 8 cone; the pond was no longer visible on 27 August. Lava continued to ooze into the ocean and produce minimal laze plumes, but by 27 August only a small single breakout from the Kapoho Bay lobe was active. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. HVO bulletin ( 24th of August - 20:30 UTC) reported that seismicity and ground deformation are negligible at the summit of Kīlauea Volcano. On the volcano's lower East Rift Zone (LERZ), only a few ocean entries were oozing lava and laze plumes were minimal from overflights early this week. Sulfur dioxide emission rates at both the summit and LERZ are drastically reduced; the combined rate is lower than at any time since late 2007. On Tuesday, the SO2 emissions from the LERZ were too low to measure although SO2 smells were noticed. HVO bulletin (19th of August - 22:39 UTC) reported that the lull in activity at Kīlauea Volcano continues. At the summit, seismicity and deformation are negligible. On the lower East Rift Zone, the only incandescence is at the coast near Ahalanui where a few ocean entries are oozing lava. Sulfur dioxide emission rates at both the summit and LERZ are drastically reduced; the combined rate is lower than at any time since late 2007 HVO reported that during 8-14 August activity at Kilauea was characterized by a slowly-circulating lava pond deep within the Fissure 8 vent (though the pond was crusted over by 14 August) and a billowing gas plume, and a few scattered ocean entries. The summit area was quiet except for occasional rockfalls into the crater. Fresh black sand from fragmented lava was transported SW by the ocean current, and accumulated in the Pohoiki harbor, creating a sandbar. The westernmost ocean entry was about 1 km NE of the harbor. Earthquake and deformation data indicated no magma movement or pressurization in the system. HVO bulletin ( 9th of August - 19h06 UTC) reported that activity and lava output from Fissure 8 remains low and there have been no signs of reactivation or new intrusion. Up-rift of Fissure 8, Fissures 9, 10, and 24, and down-rift Fissures 13, 23, 3, 21 and 7, continue to steam. Ground crews and overflights continue to monitor these for signs of new activity. This morning's overflight crew observed a crusted lava pond deep inside the steaming cone at a level significantly lower than when viewed Tuesday morning. HVO bulletin (7th of August - 23h06 UTC) reported that activity and lava output from fissure 8 remains low. The morning overflight crew observed a small active lava lake within the fissure 8 cone, a weak gas plume, and a drained upper lava channel. The surface of the lava lake was about 5-10 m below the spillway entrance. There were a diminishing number of small active ooze outs near the coast on the Kapoho Bay and Ahalanui lobes and the laze plume was greatly diminished. Active lava remains close to the Pohoiki boat ramp but has not advanced significantly toward it. As of the 3rd of August, HVO reported tha fissure 8 continues to erupt lava into the channel leading northeastward from the vent. Multiple overflows developed late yesterday afternoon and evening, one of which headed north toward Noni Farms Road, starting a small fire. Field crews determined the advancing overflow had ceased by 21:00 HST but that fires were still burning. Further downstream overflows were concentrated in the wide lava field west and south-southwest of Kapoho cone, also igniting small fires in adjacent vegetation. HVO reported that the eruption at Kilauea's Lower East Rift Zone (LERZ) and within Halema`uma`u Crater continued during 18-24 July. Lava fountaining and spatter was concentrated at Fissure 8, feeding lava flows that continued to spread through Leilani Estates and Lanipuna Gardens subdivisions, and entered the ocean at Ahalanui. Inward slumping of the crater rim and walls of Halema`uma`u continued, adjusting from the withdrawal of magma and subsidence of the summit area. Explosions from collapse events occurred about every other day (38.5 and 53.5 hours in between a few of the events). Sulfur dioxide emissions from the summit were very low. Fountaining at Fissure 8 continued, producing Pele's hair and other volcanic glass that fell within Leilani Estates. The fountains continued to feed the lava flow that traveled NE, and then SSE, W of Kapoho Crater; lava occasionally overflowed the channel, and on 28 July ignited nearby vegetation. Small plumes of laze (a corrosive steam plume mixed with hydrochloric acid and fine volcanic glass particles) were generated at several points along a broad 2-km-wide flow front at Ahalanui. The westernmost edge was less than 175 m NE of the boat ramp in Isaac Hale Park (by 30 July). HVO bulletin ( 16th of July - 19:31 UTC) reported that Fissure 8 continues to erupt lava into the perched channel leading northeastward from the vent. The channel is full but not quite up to the rim; there were no significant overflows this morning. The southern margin of the flow remained about 1 km (0.6 mi) from Isaac Hale Park this morning. Despite no visible surface connection to the fissure 8 channel, lava continues to ooze out at several points on the 6 km (3.7 mi) wide flow front into the ocean. Explosions were reported from the main ocean entry this morning with at least one being quite strong. Fissure 22 did not appear active this morning but sounds were heard from it last night. No other fissures are active this morning. HVO bulletin (July 15th - 21:21 UTC) reported that fissure 8 continues to erupt lava into the perched channel leading northeastward from the vent. Lava levels in the upper channel increased briefly following this morning's summit collapse-explosion event at 3:26 a.m. Another short-lived overflow of the channel at the vent spread east-southeast this morning, but did not advance beyond the existing flow field. The channelized ʻaʻā flow west of Kapoho Crater continues to be the main ocean entry at the southern edge of the flow front. The southern margin of the flow remained about 1 km (0.6 mi) from Isaac Hale Park this morning. Despite no visible surface connection to the fissure 8 channel, lava continues to ooze out at several points on the 6 km (3.7 mi) wide flow front into the ocean. No other fissures are active on the morning. At 3:26 a.m. HST July 15, a collapse/explosion occurred beneath the summit of Kīlauea with energy equivalent to a magnitude-5.2 earthquake. Seismic activity at the summit decreased immediately following the event, but is beginning to increase at this time. Earthquakes in the summit area have resumed following 12th of july collapse/explosion event at 2:42 PM HST, which had an energy equivalent to a magnitude-5.3 earthquake. (updated map 12th of July). HVO bulletin ( July 10th - 19:57 UTC) reported that fissure 8 continues to erupt lava steadily into the perched channel leading northeastward from the vent. Disruptions to the mid-channel occurred yesterday afternoon producing localized overflows along the margins of the flowfield, mostly atop earlier lavas. A significant overflow north of the cinder quarry advancing yesterday and last night towards Cinder Rd. has stalled. An overflow lobe moving around the west side of Kapoho Cone remains active this morning and small brushfires are reported along the margins. Downstream, lava appears to be reoccupying the channel leading to the ocean entry were multiple fingers of lava are active. The southern margin of the ocean entry shows little sign of movement. Yesterday's channel disruption and overflows were caused by blockages that developed along the channel. Additional blockages and resulting overflows are likely to occur as long as the activity continues. Fissure 22 continues to exhibit weak spattering. No other fissures are active. HVO bulletin ( July 10 - 3:05 UTC) Early on afternoon observers reported multiple overflows occurring along both sides of the main lava channel, in an area extending from near the "Y" intersection at Pohoiki Road eastwards to an area just west of Kapoho Crater. Overflows on the upper part of the channel did not extend beyond areas previously covered in lava. Overflows further down the channel have reached beyond the flow field, including one flow lobe that is moving northeast from the main channel towards Cinder Rd. Residents are urged to heed warnings and notices from Hawaii County Civil Defense. Based on information from ground observers and morning and afternoon overflights, the lower part of the main lava channel has undergone significant reorganization. In particular, the channel that had been open near Four Corners is now mostly crusted over, and plumes from ocean entry are significantly reduced. It is likely this is due to a blockage that formed in the early morning in the main channel upstream of Kapoho Crater. Flow volumes coming out of Fissure 8 remain significant, and it is possible that changes in flow channels will continue to occur in the coming days. Fissure 22 continues to exhibit weak spattering. At 9:20 AM HST on July 9, a collapse/explosion occurred beneath Kilauea caldera with energy equivalent to a magnitude-5.3 earthquake. The number of earthquake dropped from 25-40/hr to less than 10/hr. We expect the earthquakes to increase over the next day until the next collapse/explosion tomorrow. Inward slumping of the rim and walls of Halemaʻumaʻu continues in response to the ongoing subsidence at the summit. HVO bulletin ( 4th of July - 18: 53 UTC ) Fountains from Fissure 8 spatter cone continue to supply lava to the open channel with intermittent small, short-lived overflows. The spatter cone is now about 55 m (180 ft) tall at its highest point, and fountains rarely rise above that point. ( video vortex ) At the coast, the northern margin of the flow field is still oozing pasty lava at several points in the area of Kapoho Ag and Beach Lots. Lava was entering the sea over a broad area this morning primarily on the northern side of the flow front. As shown by the July 02 thermal map of the flow field, the lava channel has crusted over about 0.8 km (0.5 mi) inland of the ocean entry; lava is oozing from the flow's molten interior into the ocean along most of its broad front. Temporary channel blockages of the Fissure 8 channel causing minor overflows were observed just north of Kapoho Crater by USGS and Civil Air Patrol overflights. Fissure 22 is spattering about 50-80 m above a conical spatter cone and feeding a short lava flow that is moving slowly to the northeast along the edge of earlier flows. (updated map - 30th of June) . HVO bulletin ( 29th of June - 8:28 pm ) reported that fountains from Fissure 8 spatter cone continue to supply lava to the open channel with intermittent small, short-lived overflows. These overflows rarely extend beyond the existing flow field. No active overflows were observed during this morning's helicopter overflight.The spatter cone is now about 55 m (180 ft) tall at its highest point, and fountains rarely rise above that point. At the coast, the northern margin of the flow field is still oozing fresh lava at several points in the area of Kapoho Beach Lots and a few burning areas were observed on the south side of the flow and west of highway 137. Lava was entering the sea over a broad area this morning primarily on the northern side of the entry area. As shown by yesterday's thermal map of the flow field, the lava channel has crusted over about 0.8 km (0.5 mi) inland of the ocean entry; lava is moving beneath the crust and into still-molten interior of earlier flows before it enters the sea. HVO bulletin ( 27th of June - 8:07 pm) reported that fountains from Fissure 8 spatter cone continue to supply lava to the open channel with only small, short-lived overflows. Small overflows on both sides of the upslope portion of the channel occurred shortly after midnight, June 27. None of these overflows extended past the existing flow field. The spatter cone is now 180 ft tall at its highest point, and fountains only occasionally rise above that point. Lava is entering the sea this morning on the southern side of the entry area primarily through the open channel, but also along a 1-kilometer (0.6 mi) wide area. The morning overflight revealed that the northern margin of the flow field at the coast is oozing fresh lava at several points in the area of Kapoho Beach Lots. HVO bulletin (June 26th of June - 7:13 pm) reported that funtains from Fissure 8 spatter cone continue to supply lava to the open channel with only small, short-lived overflows. The spatter cone is now 180 ft tall at its highest point, and fountains only occasionally rise above that point. The lava flow front at the coast broadened southward and is now nearly 2 miles in width. Lava is entering the sea this morning on the southern portion of the flow front primarily through the open channel, but also along a 0.6 mi wide area with multiple laze plumes from smaller oozing lobes. Fissure 22 showed weak spattering and tiny flows around the base of the cone. This morning's overflight crew also observed minor incandescence at Fissure 16/18. HVO bulletin ( June 25th - 10:59 pm) reported that the eruption in the lower East Rift Zone (LERZ) continues with no significant change during the past 24 hours. Fountains from Fissure 8 spatter cone continue to supply lava to the open channel with only small, short-lived overflows. The spatter cone is now 180 ft tall at its highest point, and fountains only occasionally rise above that point. The lava flow front at the coast broadened southward and is now nearly 2 miles in width. Lava is entering the sea this morning on the southern side of the flow front primarily through the open channel, but also along a 1-kilometer (0.6 mi) wide area marked by billowing laze plumes. Fissure 22 is weakly active and Fissure 16/18 was not observed on the morning.At 4:12 p.m. HST on June 24, after approximately 17 hours of elevated seismicity, a collapse explosion occurred at the summit producing an ash-poor steam plume that went undetected by the weather radar. Visual observations suggested the plume rose less than 2000 ft above the caldera before drifting downwind to the southwest. The energy released by the event was equivalent to a magnitude 5.3 earthquake. HVO bulletin 23rd of June - 18:40 UTC) reported that fountains from Fissure 8 spatter cone continue to supply lava to the open channel with only small, short-lived overflows. During an overflight early this morning, geologists observed incandescence from Fissure 22, but no associated spattering or flow. Lava is entering the sea this morning on the southern side of the entry area primarily through the open channel, but also along a 1-kilometer (0.6 mi) wide area. The entry areas are marked by billowing laze plumes. HVO reported that the eruption at Kilauea's Lower East Rift Zone (LERZ) and at Overlook Crater within Halema`uma`u Crater continued during 13-19 June. Lava fountaining and spatter was concentrated at Fissure 8, feeding lava flows that spread through Leilani Estates and Lanipuna Gardens subdivisions, and built out the coastline where the fast-moving flow entered the ocean in the area of the former Kapoho Bay. Minor lava activity at Fissures 16/18 was occasionally noted, and spattering was visible at Fissure 6 on 16 June. Hawai‘i County Civil Defense reported that by 17 June a total of 533 homes had been destroyed due to lava flows. HVO bulletin (June 17th - 8:15 UTC) reported that the Lower East Rift Zone (LERZ) eruption in Leilani Estates continued with little change. Fountains from the Fissure 8 spatter cone continue to feed lava into the well-established channel that flows to the ocean at Kapoho. Occasionally, lava spills over the channel levees. The ocean entry remained fairly broad with laze blown onshore. Fissures 16 and 18 continue to ooze lava and mild spattering from Fissure 15 was observed late in the day. The flow field is relatively stable with little change to its size and shape for the past few days. HVO bulletin (16th - 2:59 UTC) reported that lava fountains from Fissure 8 reached heights between 100 and 130 ft with bursts up to 180 ft while the cinder and spatter cone that is building around the fissure is now about 170 ft at its highest point. Lava is flowing through the well-established channel from fissure 8 to the ocean at Kapoho. Occasionally, lava spills over the channel levees. The ocean entry remained fairly broad with laze blown onshore. Fissures 16 and 18 continue to ooze lava. The early afternoon overflight found the Fissure 8 vent, channel, and entry stable with a small amount of expansion at the southern boundary of the flow near the coast and south of Vacationland. Fissure 24 (southeast of Fissure 8) seemed to be steamier and emitting more fume. Fissure 9 (southeast of Fissure 24) appeared hotter and will be checked on the ground this afternoon. HVO bulletin (June 15th - 8:27 UTC) reported that fssure 8 lava fountains reached heights of 200 ft in the afternoon, and the cinder and spatter cone that is building around the fissure is now about 160 ft at its highest point. Lava is flowing through the well-established channel from fissure 8 to the ocean at Kapoho. Occasionally, lava spills over the channel levees. The ocean entry remained fairly broad with laze blown onshore. Fissures 16 and 18 continue to ooze lava. HVO bulletin (14th of June - 8:21 UTC) reported that lava fountains reaching heights of 53 m (174 ft) were observed at Fissure 8 in the late afternoon. Lava from Fissure 8 continues to flow through the well-established channel to the ocean at Kapoho, with rare, small overflows of the channel levees. A laze plume at the ocean entry was blown onshore this afternoon, and areas of upwelling offshore were present throughout the day. Fissures 16 and 18 continue to ooze lava. HVO bulletin (13th of june- 2:12 UTC) reported that line of closely spaced vents at Fissure 8 are continuing to erupt producing fountains encircled by a 115-ft spatter cone. This activity continues to feed the fast moving channelized flow that is entering the ocean at Kapoho. Weak lava activity continues at Fissures 16/18 as has been noted for the last several days. Incandescence was noted at Fissures 15 and 22. Lava was entering the ocean over a broader length this morning with several minor incandescent points and small plumes and two larger entries and corresponding plumes. The upwelling areas were also more dispersed than yesterday. (updated map 13th of June) . HVO bulletin (12th - 2:09 UTC) reported that three closely spaced lava fountains at fissure 8 are erupting with fluctuating heights from below the 115 ft high spatter cone around it up to 180 feet. Lava continues to be fed into the channelized flow trending north and then east to a single ocean entry at Kapoho. Weak lava activity at Fissures 16/18 was observed last night. This morning's overflight confirms that fountaining continues at Fissure 8 and that its channel is nearly full with no spillovers. Minor steam explosions were observed at the ocean entry. HVO bulletin reported that Fissure 8 now consists of three closely-spaced lava fountains, the tallest of which reached heights of 130-180 feet, feeding a strong channel to the northeast and then east to the ocean entry. During the day, minor spillovers have dribbled over the Fissure 8 channel levees but have generally stalled before reaching ground not covered by previous lava flows. Yesterday's measurements show that gas emissions from the fissure system have nearly doubled, possibly indicating an increase in eruption rate from Fissure 8. Minor lava activity at Fissures 16/18 continued. HVO bulletin (June 9th - 8:49 UTC) reported thatLava continues to erupt from Fissure 8, with vigorous fountains reaching heights of about 200-220 feet. Observers on the late afternoon overflight reported no significant changes in the Fissure 8 flow field, which continues to supply lava to the ocean entry at Kapoho. Two vigorous steam plumes are rising from the ocean flow front and being blown inland. Strong thermal upwelling was noted in the ocean extending up to 1000 yards out to sea from the visible lava front. Heavy gas and steam emissions were noted at fissures 9 & 10, but lava emission is occurring only at Fissure 8. Low level ash emissions continue at the summit with slowly increasing seismicity, indicating that another small explosion is likely in the next several hours. Inward slumping of the rim and walls of Halema`uma`u continues in response to ongoing subsidence at the summit. The number of houses destroyed since the beginning of this eruption has reached 600 including the areas of Leilani, Kapoho and Vacationland; This isthe most destructive eruption for Hawaii, listed in modern times, according to the mayor of the County. HVO bulletin ( June 8th - 8:24 UTC) reported that lava fountaining at Fissure 8 fluctuated with heights varying between 190 and 215 feet. This activity is feeding a lava channel flowing east to the ocean entry in the Kapoho Bay area. The noon overflight found that the delta is about 1.2 mi wide in the Vacationland/Waopae area and observed the flow was expanding northward through Kapoho Beachlots. A large area of upwelling offshore suggests the presence of lava flowing on the ocean floor in that area. HVO bulletin ( June 7th - 00:34 UTC) reported that on the morning, lava fountaining at Fissure 8 continued to reach heights of 150-180 feet, feeding a stable channel to the east to the ocean entry in the Kapoho Bay area. Lava is entering the ocean in the Vacationland subdivision. Vacationland has been completely covered by lava, and overnight the flow expanded north by 100 m within Kapoho Beach Lots. The lava delta that formed at Kapoho Bay extended slightly overnight. The northern lobe of the Fissure 8 flow shows no signs of activity this morning, and there is only wispy smoke at the flow front. No other fissures are active. HVO bulletin (June 6th - 8:28 UTC) reported that persistent lava fountaining at Fissure 8 is reaching heights of 150-180 feet. This eruptive activity continues to feed a channel transporting lava to the east to the ocean entry in the Kapoho Bay area. Minor breakouts along the channelized flow have been very small and stagnated before travelling any significant distance. HVO's late afternoon overflight showed that the Fissure 8 flow is continuing to form a lava delta with limited continuing advances into the surviving parts of the Kaphoho Beach Lots and Vacationlands neighborhoods. The northernmost lobe of the Fissure 8 flow is advancing very slowly to the northeast. No other fissure vents are active. HVO bulletin (June 5th - 5:30 UTC) reported that fountaining at Fissure 8 continued feeding a robust lava channel to northeast along Highway 132 to the ocean entry in Kapoho bay. As of late afternoon the lava entry had built a delta extending approximately 700 yards into the bay. A laze plume is blowing inland from the ocean entry but dissipating quickly. The lava flow front is about 600 yds wide. A lava breakout was also occurring upslope of the Kapoho cone cinder pit but stalled about 300 yards southeast of the intersection of Railroad Avenue and Cinder Road. Sluggish lava flows are present in the vicinity of Fissure 18; all other fissures are inactive. HVO bulletin ( June 4th - 5:07 UTC) reported that fissure 8 fountaining persisted throughout the day to heights up to 220 feet, and the channelized flow continued to deliver lava northeast along Highway 132 to the Kapoho area. Lava is advancing along a 0.5-mile-wide front towards the ocean at Kapoho Bay between Kapoho Beach Road and Kapoho Kai Drive. As of 5:45 PM HST, the lava flow was about 245 yards from the ocean at its closest approach point. Other branches of the Fissure 8 lava flow were inactive. All other fissures are inactive, although observers on the late afternoon overflight noted abundant gas emission from Fissures 9 & 10 and incandescence without fountaining at fissures 16 & 18. HVO bulletin (June 2nd - 8:29 UTC) treported that fountaining at Fissure 8 is reaching 180 - 220 feet in height and continues to feed a channelized lava flow to the northeast along Highway 132 and down into the Four Corners region (at the intersection of Highways 132 and 137). Small overflows from the channel are occurring along its length, including in a few places near the intersection of Highway 132 and Pohoiki road. As of 9:50 PM HST the flow front was approximately 0.28 miles from the intersection. The more western branches of the Fissure 8 flow either stalled or advanced only short distances. Fissure 18 appears to be crusted over or inactive. The flows that had been moving toward Highway 137 are either inactive or moving very slowly. Fissure 22 appears to be inactive. HVO bulletin ( June 1st - 4:41 UTC) reported that the fissure 8 continued to produce persistent fountains that reached heights up to 260 feet. A small spatter cone is forming on the downwind side of the fountain and is approximately 100 feet high. The fountains are feeding flow activity to the northeast, and minor overflows from the Fissure 8 channel are occurring along its length. One overflow covered the remaining northern part of Makamae Street in Leilani Estates. This overflow crossed Kahukai street, filling in a low area between Makamae and Luana streets. The front of the Fissure 8 flow near Noni Farms road advanced at rates up to 100 yards/hour. At 12:30 PM HST, the flow front was 1.9 miles from the Four Corners area. High eruption rates from Fissure 8 have led to the formation of a leveed channel along the western edge of the lava flow. Failure of flow levees could result in rapid advance of flows. Flow margins are extremely hazardous and should not be approached. Fissure 18 feeds the upper part of a lava flow that extends to 1.5 mi from Highway 137; the lower portion of the fissure 18 lava flow stalled about 0.5 mi from the highway. Fissure 2 is weakly active and is pooling lava around the vent. HVO bulletin (May 31st - 5:24 UTC) reported that fissure 8 maintained high fountains through Wednesday with sustained heights exceeding 200 feet and the presence of multiple secondary fountains that reached to 60 feet. This fountaining continued to feed a lava flow that moved downslope along Highway 132. Advance rates were less than 100 yards/hour for the three lobes of the flow. The flow moved north of Highway 132 in the vicinity of Noni Farms and Halekamahina roads, from which the two easternmost lobes advanced in a more east northeasterly direction while the westernmost lobe advanced in a northeasterly direction. The Fissure 18 flow also remained active, moving downslope toward Highway 137 at rates of much less than 100 yards per hour. During the day, sporadic bursts of activity were also observed from Fissures 22, 6, and 13. HVO bulletin (May 30th - 2:51 UTC) reported that vigorous eruption of lava continues from the lower East Rift Zone (LERZ) fissure system in the area of Leilani Estates and Lanipuna Gardens. Fissure 8 remained very active today fountaining to heights of 200 feet at times and feeding a lava flow that advanced atop the Fissure 8 ʻaʻā flow that was active Sunday night/Monday morning. The first lobe of this flow crossed highway 132 just before 2 pm HST Tuesday. Lava continues to advance toward the northeast. Visual observations early Tuesday afternoon also confirmed continued weak activity at Fissures 18 and 19. Fissure 18 has produced channelized flows which have advanced 1.6 mi toward the coast. HVO bulletin (May 29th - 2:35 UTC) reported that the lava flow from Fissure 8 reached Pohoiki Rd. this morning and stalled as the Fissure's activity abruptly diminished. A few fissures reactivated briefly during the day. As of the 1 pm overflight, Fissure 8, 18, 20, 22, 6/13, and 7/21 reactivated with Fissure 7/21 having the highest fountains. The reactivated fissures have not yet erupted enough lava to reach the coast so the two ocean entry sites were relatively inactive. Only a minor ooze of residual lava was entering the ocean from the Eastern channel. (map) HVO bulletin (May 28th - 4:20 UTC) reported that vigorous eruption of lava continues from the lower East Rift Zone (LERZ) fissure system in the area of Leilani Estates and Lanipuna Gardens. Fissures 22 and 13 continue to feed lava flows extending south to the lava ocean entry. Signals recorded on stations in the LERZ indicate that the lava ocean entry remained active overnight. This morning, lava activity at both vents has diminished and the ocean entries are weaker than yesterday. Fissure 6 is no longer active. Fissure 21 has been intermittently active. Fissure 7 activity is very active, producing a large spatter rampart over 100 feet tall from fountains reaching 150-200 feet. The fountains fed two perched channels--the north channel fed a lava flow that advanced toward pad E of the PGV property and the south channel a flow that was advancing to the southeast along the west border of the fissure 22 flow.Ash continued to erupt intermittently from the Overlook crater, within Halemaʻumaʻu crater, at the Kīlauea summit, the largest occurred around noon producing an ash column to nearly 10,000 ft. The Fissure 7 north channel fed a flow that advanced into PGV property and approached pad E before it stalled this morning; however, the flow was refreshed by lava from the vent and, about noon, started to advance again covering a portion of pad E and also producing a narrow flow to the north of pad E. These flows continue to be active as of this posting. HVO bulletin (May 26th - 2:56 UTC reported that fissure 22 continues to erupt lava that is flowing southeast to the coast where lava is entering the ocean. Fountains at Fissures 6 and 13 feed lava into a channel that also reaches the coast, making a second ocean entry. Fissure 7 and 21 are feeding a lava flow that has advanced northeastward crossing Kahukai St. at about 3:30 pm this afternoon and continuing to the northeast at a slow pace. Fissure 17 is barely active.At the summit multiple small eruptions of ash occurred over the past day, all ejecting ash to under 10,000 ft above sea level. One of the largest occurred about 4:17 pm sending ash as high as 12,000 feet above sea level. HVO bulletin (May 25th - 3:12 UTC) reported that fissure 22 continues to erupt lava that is flowing southeast to the coast where lava is entering the ocean. Fairly tall fountains at Fissures 6 and 13 feed lava into a channel that reached the coast yesterday making a second ocean entry. Fissure 7 and 21 are feeding a pahoehoe flow that has advanced eastward covering most of the area bounded by Leilani Blvd, Mohala St., and and the fissure line. Fissure 17 continues weak spattering, Fissure 19 and 23 are no longer active. At the summit Seismic levels, which abruptly decreased after the recent explosive eruptions, are again slowly increasing. At this time, based on HVO web cameras, a robust plume of gas and steam is billowing out of the Overlook vent and drifting generally southwest. HVO bulletin (May 24th - 2:47 UTC) reported that fissure 6 through 22 continue erupting lava fountains. The fountains from Fissure 22 feed a single lava channel that reaches the coast just north of MacKenzie State Park. The actual point of entry has continued shifting to the west. Fountains erupted from Fissures 5, 6, 13, and 19 continued to feed a lava flow advancing to the south along the west side of the Fissure 22 flows and may reach the ocean this afternoon or evening. Fissure 17 continue weak spattering, Fissure 8 reactivated briefly this morning to erupt two small pahoehoe flows over the initial `a`a flow. At the Kilauea summit multiple small eruptions of ash occurred over the past day, all ejecting ash to under 10,000 ft above sea level. One of the largest occurred about 10:30 this morning. Additional explosions are possible at any time. HVO bulletin (May 23rd - 8:22 UTC) reported that eruption of lava and ground cracking continues in the area of Leilani Estates subdivision. Over the course of the day, the most active eruptive activity in the Lower East Rift Zone shifted to the middle portion of the system of fissures. The most active fissures were 22,19, 6, 5, and 23. Fissure 17, at the northeastern end of the fissure system is only weakly active now. Fissure 6 is feeding a flow to the south, roughly parallel to the western flow from fissure 22. Fountaining of fissures 5 and 23 fed flows in the eastern part of Leilani Estates. Small ash emissions from the Overlook crater have been occurring frequently today. Moderate trade winds were blowing to the southwest and noticeable ashfall may happen in downwind locations. HVO bulletin ( May 22nd - 2:11 UTC) reported that fissure 22 is erupting a short line of low lava fountains that feed a channelized flow that reaches the coast just north of MacKenzie State Park. Spattering continues from a reactivated Fissures 6 that intermittently feeds a short lava flow. Fissures 17 and 19 continue weak spattering.Volcanic gas emissions have tripled as a result of the voluminous eruptions from Fissure 20 so SO2 concentrations are likely elevated to higher levels throughout the area downwind of the vents. ( video -Photos ) . At the summit One explosive eruption of ash occurred at about 1 am this morning. Several smaller ash emissions have also taken place and produced abundant ash. HVO bulletin ( May 21st - 0:15 UTC) reported that spattering continues from Fissures 6 and 17 with significant lava flows being erupted from Fissures 20. Two of these lava flows from Fissure 20 reached the ocean along the southeast Puna coast overnight; however, a crack opened under the east lava channel early this morning diverting the lava from the channel into underground voids. This may cause changes downslope in the channel system and the ocean entry.Volcanic gas emissions have tripled as a result of the voluminous eruptions from Fissure 20 so SO2 concentrations are likely elevated to higher levels throughout the area downwind of the vents.At the Kilauea summit Seismic levels, which abruptly decreased after explosive eruptions on Saturday afternoon and Sunday noon, are again slowly increasing. Based on HVO web cameras, a robust plume of gas and steam is still billowing out of the Overlook vent and drifting generally southwest. . HVO buletin (May 19th - 5:53 UTC) that the eruption of lava and ground cracking in the area of Leilani Estates subdivision continues. Late on afternoon, a fast-moving pahoehoe lava flow emerged from fissure 20 and traveled southeast where it crossed Pohoiki Road. Estimates from Hawaii County Fire Department aerial video at 6:30 pm indicate advance rate of 300-400 yards per hour; this rate may change with time and USGS crews are in the area to try and monitor flow advance. Other fissures remain weakly active and volcanic gas emissions remain elevated throughout the area downwind. Smoke from burning vegetation as lava flows advance is also contributing to poor air quality. . HVO bulletin (May 18th, 2:54 UTC) reported that after the summit explosive eruption early morning seismic levels have been gradually increasing, but as of this report no additional explosions have occurred. No earthquakes greater than magnitude 3.5 have occurred in the past day.Volcanic gas emissions at the summit remain high. At the Lower East rift zone tThis afternoon, fissure 17 is still actively spattering but the flow is nearly stalled. In addition, fissures 18, 19, and 20 have reactivated and a new fissure (21) has opened between fissures 7 and 3. An area 50-100 yards wide, parallel to and north of the line of fissures between Highway 130 and Lanipuna Gardens, has dropped slightly. This long depression is currently being filled by pahoehoe lava flows from fissures 20 and 21. Volcanic gas emissions remain elevated throughout the area downwind of the fissures. HVO bulletin (May 17th - 2:47 UTC) reported that ash emission from the Overlook crater within Halema`uma`u has generally decreased since yesterday. Although varying in intensity, at times the plume contains enough ash to be gray in color. The cloud is rising an estimated 3 to 4,000 feet above the ground, but altitudes are varying with pulses of emission. The ash cloud is drifting slowly northward from the Kilauea summit and ashfall may occur in Hawai`i Volcanoes National Park and Volcano Village. Communities downwind may receive ashfall and should take necessary precautions. Several magnitude 3 or stronger earthquakes occurred beneath the summit today. The earthquakes were at shallow depth and resulted in cracks in Highway 11 near the entrance to Hawai`i Volcanoes National Park. Some facilities within the National Park were damaged as well. The explosive eruption of 1924 at the Kilauea summit was also marked by hundreds of felt earthquakes as magma drained from the caldera. This afternoon, eruptive activity remained concentrated at fissure 17 but the spattering was decreasing in vigor. The advance of the flow has slowed significantly since yesterday afternoon; the flow remains nearly 2.5 km (1.5 mi) in length. Volcanic gas emissions remain elevated throughout the area downwind of the fissures. Magma continues to be supplied to the lower East Rift Zone as indicated by the continued northwest displacement of a GPS monitoring station. Elevated earthquake activity continues, but earthquake locations have not moved farther downrift in the past couple of days. HVO bultetin (15th of May 23:27 UTC) reported that as of early this morning, eruption of ash from the Overlook vent within Halemaumau crater at Kilauea Volcano's summit has generally increased in intensity. Ash has been rising nearly continuously from the vent and drifting downwind to the southwest. Ashfall and vog (volcanic air pollution) has been reported in Pahala, about 18 miles downwind. NWS radar and pilot reports indicate the top of the ash cloud is as high as 10,000 to 12,000 feet above sea level, but this may be expected to vary depending on the vigor of activity and wind conditions. Ash emission from the Kilauea summit vent will likely be variable with periods of increased and decreased intensity depending on the occurrence of rockfalls into the vent and other changes within the vent. HVO bulletin (14th of May 18:36 UTC) reported that on the morning, activity is dominated by lava fountaining, explosion of spatter more than 100 feet into the air, and an advancing lava flow from fissure 17 at the northeast end of the fissure system. As of 630 am the fissure 17 flow had traveled just under a mile roughly east-southeast parallel to the rift zone. It is turning slightly south and at this time is about one half mile south of Highway 132. Fissure 18 that became active late yesterday is weakly active. A fissure 19 has been spotted very near fissure 15 as of about 8 am just northeast of Pohoiki Road and north of Hinalo Street at the east end of Lanipuna Gardens. It is producing a sluggish lava flow. Volcanic gas emissions remain elevated throughout the area downwind of the vents. Yesterday with the onset of activity at fissure 17, powerful steam jets have occurred intermittently near the west end of the fissure. These jets may be responsible for some of the loud sounds reported by residents and emergency workers. HVO reported that as of late today (May13rd), activity was dominated by lava fountaining, explosion of spatter bombs hundreds of feet into the air, and several advancing lava flow lobes moving generally northeast from fissure 17 at the downrift (northeast) end of the new fissure system. As of about 7 pm, one lobe was 2 yards thick and advancing roughly parallel to Highway 132. The flow front was just over a half mile southeast of the intersection of Highway 132 and Noni Farms Road. Based on overflight images late this afternoon, additional lava from fissure 17 was also moving slowly southeast. Volcanic gas emissions remain elevated. At the Kilauea summit Deflationary tilt continues. A robust plume of steam and volcanic gas, occasionally mixed with ash, has risen from the Overlook crater within Halemaumau. HVO bulletin (May12th, 2:39 UTC) reported that Volcanic unrest in the lower East Rift Zone of Kīlauea Volcano continues. While no lava has been emitted from any of the 15 fissure vents since May 9, earthquake activity, ground deformation, and continuing high emission rates of sulphur dioxide indicate additional outbreaks of lava are likely. The location of future outbreaks is not known with certainty, but could include areas both uprift (southwest) and downrift (northeast) of the existing fissures, or resumption of activity at existing fissures. Communities downslope of these fissures could be at risk from lava inundationHVO bulletin (May 11th 4:51 UTC) reported that High levels of unrest related to the intermittent eruption of lava in Leilani Estates in the lower East Rift Zone of Kīlauea Volcano continue. While no lava was noted erupting today from any of the 15 fissure vents formed thus far, earthquake activity, ground deformation, and continuing high emission rates of sulphur dioxide indicate additional outbreaks of lava are likely. The location of future outbreaks is not known with certainty, but could include areas both uprift (southwest) and downrift (northeast) of the existing fissures, or resumption of activity at existing fissures. Earthquake activity was high in the area today. Continuing ground deformation and located earthquakes were mostly in the area around and northeast of Fissure 15 at Pohoiki Road indicating that the intrusion is migrating further to the northeast. Steaming ground cracks in the vicinity of Highway 130 continue. HVO bulletin (May 10th, 2:55 UTC) reported that the intermittent eruption of lava in Leilani Estates in the lower East Rift Zone of Kīlauea Volcano continues. Visible activity this early afternoon was again focused on the northeast portion of the fissure area. Fissure 15 broke ground across Poihiki Road, generating a pahoehoe flow about 20 m (66 ft) long. During an overflight of the area about 3 p.m. HST, geologists observed a new steaming area uprift (west) of Highway 130. During a second overflight at 4:30 p.m., the area was still steaming. Rates of motion increased late this morning on a GPS station 1.5 km (1 mile) southeast of Nanawale Estates. The direction of motion is consistent with renewed movement of magma in the downrift direction (to the northeast). Rates of seismicity changed little throughout the day; located earthquakes were mostly uprift (west) of Highway 130. Gas emissions remain elevated in the vicinity of fissures. Tiltmeters at the summit of Kīlauea Volcano continue to record the deflationary trend of the past week and the lava lake level continues to drop. At about 8:32 a.m. HST, a large rockfall from the steep crater walls into the retreating lake triggered an explosion that generated an ash column above the crater; the ash was blown toward the south-southwest. Rockfalls and explosions that produce ash columns are expected to continue. HVO bulletin (May 8th, 18:15 UTC ) reported that of 7:00 am, the eruption along Kīlauea Volcano's lower East Rift Zone within the Leilani Estates subdivision has paused. Strong emission of gas continues from the fissure system that is now about 2.5 miles long. This pause is likely temporary and resumption of lava emission or additional fissure outbreaks are possible at any time. Deflationary tilt at the summit of the volcano continues and the lava lake level continues to drop. There is no active lava in the Puʻu ʻŌʻō area. Aftershocks from Friday's magnitude-6.9 earthquake continue and more are expected. Rockfalls into the Overlook vent within Halemaʻumaʻu crater are producing intermittent ash emissions. Seismicity at Kīlauea's summit remains elevated. USGS/HVO continues to monitor the situation 24/7 in coordination with Hawaii County Civil Defense and other authorities. Field crews are onsite this morning examining the fissure vents, lava flow of yesterday, and searching for any signs of new or resumed activity. As of the 8th of May (3:59 UTC), HVO reported that the intermittent eruption of lava in the Leilani Estates subdivision in the lower East Rift Zone of Kīlauea Volcano continues. The location of activity today was focused on the southwest portion of the area. This morning, two new fissure segments broke ground. The first (fissure 11) opened in a forested southwest of Leilani Estates about 9:30 am and was active for only 3 hours. The second (fissure 12) opened about 12:20 between older fissures 10 and 11. By 3:15 pm, both new fissures were in active but the west end of fissure 10 was steaming heavily. Cracks on Highway 130 widened from 7 cm to 8 cm over the course of the day and additional cracks were found just west of the highway on trend with the eruptive fissures. As of the 7th of May (6:59 UTC) HVO reported that the intermittent eruption of lava in the Leilani Estates subdivision in the lower East Rift Zone of Kīlauea Volcano continues. Fissure 8 erupted lava fountains until about 4 p.m. HST, and the aa' flow advanced slowly northward through the afternoon, even after the lava fountains shut down. Geologists reported this early evening that the flow crossed Ho'okopu Road, a distance from fissure 8 of about about 1.1 km (0.6 miles). They also reported new ground cracks in the vicinity of fissures 8 and 9 that were emitting thick steam and gases, but no lava spattering was observed by the time of this status report. Rates of seismicity and deformation decreased in the past day. The absence of additional deformation in the past day suggests a pause in magma acculumation in the distal part of the intrusion. Tiltmeters at the summit of Kīlauea Volcano continue to record the deflationary trend of the past several days. Corresponding to this deflationary trend, the summit lava lake level in Overlook crater dropped about 2 m (6.5 ft) per hour during the day. The lake level has dropped an estimated 220 m (722 ft) since the collapse of Puʻu ʻŌʻō crater on April 30. Rockfalls from the steep crater walls into the retreating lake continue to produce ashy plumes above Halema'uma'u crater. Rockfalls and ashy plumes are expected to continue as the lake level drops. Earthquake activity in the summit remains at elevated levels. In the past 24 hours, about 31 magnitude-2 earthquakes occurred at depths less than 5 km (3 miles) beneath the summit area (compared to the 24-hour period when 152 magnitude-2 and magnitude-3 earthquakes. These earthquakes are related to the ongoing subsidence of the summit area and earthquakes beneath the south flank of the volcano. HVO bulletin ( Saturday, May 5, 2018, 21:54 UTC) reported that active eruption of lava and gas continues along Kīlauea Volcano's lower East Rift Zone within the Leilani Estates subdivision. Additional fissure vents producing spatter and small lava flows developed early this morning, and additional outbreaks in the area are likely. Deflationary tilt at the summit of the volcano continues and the lava lake level continues to drop. There is no active lava in the Puʻu ʻŌʻō area. Aftershocks from yesterday's M6.9 earthquake continue and more should be expected, with larger aftershocks potentially producing rockfalls and associated ash clouds above Puʻu ʻŌʻō and Halemaʻumaʻu Crater. Residents of the Puna District should remain alert, review individual, family, and business emergency plans, and watch for further information about the status of the volcano. Video. According to latest HVO bulletin (Saturday, May 5, 2018, 02:04 UTC) eruption of lava in the Leilani Estates subdivision in the lower East Rift Zone of Kīlauea Volcano continues. Several additional eruptive fissures or vents - each several hundred yards long - have opened over the past day. No significant lava flows have yet formed. Spatter and lava are accumulating primarily within a few tens of yards of the vent. The sixth and most recent fissure is on the eastern edge of the subdivision. Not all fissure vents remain active and no far-traveled lava flows have formed. For maps showing the locations of these features : https://volcanoes.usgs.gov/volcanoes/kilauea/multimedia_maps.html .HVO geologists will be in the area overnight to track additional activity that may occur, and other scientists are closely tracking the volcano's overall activity using various monitoring data streams. Seismicity and deformation are consistent with continued accumulation of magma within the rift zone. Additional outbreaks of lava are expected. According to report from HVO (Friday, May 4, 2018, 08:13 UTC) the eruption in the Leilani Estates subdivision in the lower East Rift Zone of Kīlauea Volcano that began in late afternoon temporary ended by about 6:30 p.m. HST. Lava spatter and gas bursts erupted from the fissure for about two hours, and lava spread a short distance from the fissure, less than about 10 m (33 ft). At this time, the fissure is not erupting lava and no other fissures have erupted. HVO geologists are working near the fissure overnight to track additional activity that may occur, and other scientists are closely tracking the volcano's overall activity. Geologists reported this evening that the presence of sulfur gas is quite noticeable around the fissure, typical of active and recently active fissures. The concentration of sulfur dioxide gas is high within tens of meters (yards) of the fissure. Lava flows did not advance more than about 10 m (33 ft) from the fissure. The flows are no longer active. At this time, no other fissures have erupted from along the rift zone. Tiltmeters at Kīlauea's summit continue to record deflationary tilt and the lava lake level has dropped about 37 m (121 ft) in the past 24 hours. Seismic activity has not changed significantly during the day or since the brief fissure eruption. Previously, HVO reported that the intrusion of molten rock into the lower East Rift Zone of Kīlauea Volcano reached the surface in the late afternoon on May 3 in a part of Leilani Estates. A fissure about 150 m (492 ft) long erupted mostly spatter and intermittent bubble bursts for about 2 hours.Lava did not travel more than a few m (yards) from the fissure.Hawaii County Civil Defence is coordinating needed response including evacuation of a portion of the Leilani subdivision. USGS Hawaiian Volcano Observatory deployed geologists to the eruption site overnight, and other scientists are monitoring various data streams telemetered to the observatory 24/7.As of the 30th of April, in a special report HVO reported that following weeks of inflation, the floor of the crater of Pu'u O'o collapsed on April 30, 2018, between 14h and 16h30 in two episodes visibles on a thermal camera located on the edge of the crater. Bad weather conditions prevented the observatory teams to fly over the crater and cannot observe this activity.The collapse caused the release of a large amount of reddish ash around the Pu'u O'o for several kilometers on the 61 g lava flow. Following this collapse, seismometers and tiltmeters recorded an increase in seismic activity and deformation from the summit area of ​​Kilauea to an area between 10 and 16 km east of Pu'u O'o; during the night, this activity continued to spread along the rift zone to the east and the highway 130 to 30 km ... marking an area potentially at risk of eruption.The strongest earthquake of the sequence was of magnitude 4, south of Pu'u O'o 'on April 27 at 2:39. A new ladder crack, of 1 km long, has opened to the west of Pu'u O'o, characterized by heavy outgassing. its released a small amount of lava, according to the presence of small areas of spatters; it is no longer active. The level of the upper lava lake, located in the Halema'uma'u crater, has dropped 15 meters, suggesting an intrusion from the summit area during the weekend into the Pu'u O'o magmatic system towards the East; summit deflation supports this mechanism.The volcanic alert level remains at Watch and the aviation code is orange. Residents of Puna must remain alert and monitor information on the status of the volcano.During 18-24 April HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea's Overlook crater. The lake level was high, and by late on 21 April had overflowed the S crater rim. As of midday on 23 April the new flows has covered about 16 ha of the floor, or about 30%. Overflows of the crater rim continued through 24 April, flowing as far as 375 m onto the N, SW, and S parts of the crater floor. HVO noted that the overflows were the first significant ones since May 2015. Surface lava flows were active above Pulama pali. On 18 April geologists observed the pit crater on the W side of Pu'u 'O'o Crater, noting that overflows had built up the crater rim to several meters above the crater floor and 7 m higher compared to late March. During 11-17 April HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea's Overlook crater. The lake level was high, with spattering visible from HVO and Jaggar Museum; by 16 April the lake level was 10 m below the rim of the Overlook crater. Surface lava flows were active above Pulama pali. On 11 April a moderate swarm of over 200 earthquakes occurred at depths of 7-9 km below the summit. The largest event was a M 2.4. Seismicity returned to background levels at 0230. Three minor ledge collapses were detected on 12 April, one at 1157 and two just after 1830. Surface lava flows were active above Pulama pali; on 13 April most scattered breakouts were within 2.2 km from Pu'u 'O'o Crater, and one was about 5 km away. During 4-10 April HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea's Overlook crater. Surface lava flows were active above Pulama pali. Webcams recorded spattering from a small lava pond in a pit on the W side of Pu'u 'O'o Crater. The lava flow from a vent on the SE part of the crater floor continued to expand through 6 April. A rockfall at 1028 on 6 April triggered an explosion in the lava lake, damaging the webcam power system on the crater rim. During 28 March-3 April HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea's Overlook crater. Surface lava flows were active above Pulama pali. Webcams recorded spattering from a small lava pond in a pit on the W side of Pu'u 'O'o Crater. The lava flow from a vent on the SE part of the crater floor continued to expand. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island. The Webcam images, which are updated every five minutes, can be accessed at : http://volcanoes.usgs.gov/hvo/cams/NCcam/ . From HVO - Near real-time web cam Pu'u'O'o. Halemaumau webcam

USA - Mauna Loa volcano (Hawaian islands)

July 23rd, 2021

As of te 22nd of July, HVO reported that seismicity rates at the summit remain slightly above long-term background levels, with 38 low-magnitude earthquakes (below M2.5) recorded below the summit and upper flanks over the past week. of Mauna Loa. The majority of these earthquakes occurred at shallow depths below 8 kilometers below sea level. Monitoring of soil deformation, gas releases and visual monitoring show no significant changes. As of the 5th of June, HVO reported that eismicity rates at the summit remain slightly high and above long-term background levels, with around 55 low-magnitude earthquakes below Mauna Loa, most concentrated below the summit and elevation flanks of the volcano. All of the earthquakes last week were below M3 and mostly occurred at depths less than 8 km (about 5 mi) below ground level. Other Mauna Loa monitoring data feeds show no significant changes in deformation rates or patterns that would indicate increased volcanic risk at present. Gas concentrations (below 2 ppm SO2) and fumarole temperatures (below 100 degrees Celsius) at the summit and Sulfur Cone in the southwest rift zone remain stable.As of the 29th of April, HVO reported that over the past week, HVO seismometers have recorded around 150 small-magnitude earthquakes beneath Mauna Loa, most of them concentrated below the summit and upper flanks of the volcano. All of the earthquakes last week were below M3 and mostly occurred at depths less than 8 km (about 5 mi) below ground level. Global Positioning System (GPS) measurements continue to show a slightly scalable deformation pattern of the summit over the past week. Gas concentrations (0 ppm SO2) and fumarole temperatures (below 100 degrees Celsius or 212 degrees Fahrenheit) at the summit and at Sulfur Cone in the southwest rift zone remain stable. HVO reported a swarm of 172 earthquakes occurred northwest of the summit of Mauna Loa on March 29 and 31, about 6 to 8 km (3.5 to 5 miles) below the surface. An inclinometer near the summit of Mauna Loa measured a small change in inclination along with the flank swarm. The change in tilt was consistent with the contraction across the summit and has since leveled off. Over the past week, HVO seismometers have recorded a total of 245 low-magnitude earthquakes (almost all below M3) below Mauna Loa, the most concentrated below the summit and upper flanks of the volcano at depths less than 8 km (about 5 mi) below ground level. Gas concentrations (0 ppm SO2) and fumarole temperatures (below 100 degrees Celsius or 212 degrees Fahrenheit) at the summit and at Sulfur Cone in the southwest rift zone remain stable. The webcams do not show any change in the landscape. Massive Mauna Loa shield volcano rises almost 9 km above the sea floor to form the world's largest active volcano. Flank eruptions are predominately from the lengthy NE and SW rift zones, and the summit is cut by the Mokuaweoweo caldera, which sits within an older and larger 6 x 8 km caldera. Two of the youngest large debris avalanches documented in Hawaii traveled nearly 100 km from Mauna Loa; the second of the Alika avalanches was emplaced about 105,000 years ago (Moore et al. 1989). Almost 90% of the surface of the basaltic shield volcano is covered by lavas less than 4000 years old (Lockwood and Lipman, 1987). During a 750-year eruptive period beginning about 1500 years ago, a series of voluminous overflows from a summit lava lake covered about one fourth of the volcano's surface. The ensuing 750-year period, from shortly after the formation of Mokuaweoweo caldera until the present, saw an additional quarter of the volcano covered with lava flows predominately from summit and NW rift zone vents. (GVN/GVP)

***************************************************************************************************************************************************************************************************

U.S.A. - Bogoslof volcano island (Aleutian islands)

February 20th, 2018

End eruption report - The AVO has put online a 3D multispectral image of Bogoslof, resting since August 30, 2017, end of the eruption 2016-17. The approximately 60 explosive episodes characterizing this period have significantly modeled the Bogoslof's morphology. The island has grown by a factor of three, reaching 1.6 km², but new pyroclastic materials and surge deposits are not consolidated; erosion modifies the contours of Bogoslof permanently, and in December, the lagoon of the vent opened on the ocean on the north coast, marking a gradual return to more modest dimensions ... general problem of news or remodeled volcanic islands: construction and destruction. Previous news - On 6 December AVO decreased the Aviation Color Code and Volcano Alert Level for Bogoslof to Unassigned, noting that no significant activity had been observed in seismic, infrasound, satellite, or lightning data during the past three months. The last detected explosive activity occurred on 30 August 2017. On 27 September AVO reported that the last explosion at Bogoslof was detected on 30 August, and no new volcanic activity was observed in satellite, seismic, or infrasound data since then. The Aviation Color Code was lowered to Yellow and the Volcano Alert Level was lowered to Advisory. AVO reported that during 20-26 September nothing significant was observed in partly to mostly cloudy satellite images of Bogoslof, and no activity was detected in seismic or infrasound data. Weakly elevated surface temperatures were identified in satellite images during 22-23 September, indicating ongoing unrest. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 13-19 September nothing significant was observed in partly to mostly cloudy satellite images of Bogoslof, and no activity was detected in seismic or infrasound data. Weakly elevated surface temperatures were identified in satellite images during 13-14 and 16-17 September, indicating ongoing unrest. On 17 September discolored ocean water was visible in satellite data, possibly representing outflow from the crater. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 6-12 September nothing significant was observed in mostly cloudy satellite images of Bogoslof, and no activity was detected in seismic or infrasound data. The 8 September report noted that the crater lake had been bisected by a narrow isthmus of land. Elevated surface temperatures were identified in one satellite image during 10-11 September. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that an explosive event at Bogoslof began at 0405 on 30 August and continued intermittently until 0555; the event produced a low-level ash plume that rose to around 6.1 km (20,000 ft) a.s.l. and drifted SSE. Later that day seismic and infrasound data showed quiet conditions, and a low-level plume (likely steam) drifted almost 65 km SSE. Satellite, infrasound, and seismic data showed nothing notable during 31 August-5 September. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. Three short-duration eruptive events occurred during 27-28 August. The first, a two-minute-long explosion at 1508 on 27 August, produced a volcanic cloud that rose 7.9 km (26,000 ft) a.s.l. and drifted SE. The second event started at 0323 on 28 August and lasted 25 minutes. The resulting small cloud drifted ESE and quickly dissipated. The third event was detected at 1117 on 28 August and generated a small volcanic cloud that rose 7.6-9.1 (25,000-30,000 ft) a.s.l. Slightly elevated surface temperatures were observed in a few satellite images during 28-29 August. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that a satellite image of Bogoslof acquired at 0628 on 24 August showed elevated surface temperatures and a small plume that was most likely steam drifting 17 km S. During 24-25 August a robust steam plume drifting 70 km SE and elevated surface temperatures were identified in satellite data. A four-minute-long explosion that began at 1629 on 26 August generated an eruption cloud that rose 8.2 km (27,000 ft) a.s.l. and drifted SE. The event was also observed in seismic and infrasound data, and one lightning stroke was detected. . AVO reported that photographs of Bogoslof taken during an overflight on 15 August showed that the vent area (which had dried out during the 7 August eruption) had refilled with water. Seismicity decreased on 16 August and remained low at least through 18 August. Weakly elevated surface temperatures consistent with a warm lake were identified in satellite data during 19-20 August. Satellite data acquired on 21 August showed an approximately 125-m-diameter lava dome within the intra-island lake, just W of the 1992 lava dome. A cold volcanic plume, likely from the lava dome, drifted about 55 km S of the island. Some minor explosions were detected in infrasound data at about 0410 on 22 August. The lava dome had grown to 160 m in diameter. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that on 9 August seismic and infrasound data suggested low-level eruptive activity at Bogoslof; weakly elevated surface temperatures and a minor steam emission were identified in satellite images. No significant activity was observed in cloudy satellite images, and no activity was detected in seismic, infrasound, or lightning data during 10-13 August. Two short pulses of tremor were detected (at 0853, lasting five minutes, and at 0913, lasting three minutes) in seismic data; seismicity returned to baseline levels afterwards. A sequence of seismic events began at 0000 on 15 August; no activity was observed in infrasound, lightning, or satellite data. The Aviation Color Code remained at Orange and theVolcano Alert Level remained at Watch.AVO reported that during 2-6 August no activity at Bogoslof was observed in mostly cloudy satellite images, and no activity was detected in seismic, infrasound, or lightning data. An explosive eruption began at 1000 on 7 August, following more than an hour of increased seismicity. A pilot reported that an ash cloud rose to an altitude of 9.8 km (32,000 ft) a.s.l., prompting AVO to raise the Aviation Color Code (ACC) to Red and the Volcano Alert Level (VAL) to Warning. The eruption lasted about three hours, and was longer lived than most of the events in the eruptive sequence that started in December 2016. At 1341 AVO noted that the ash plume had formed a continuous cloud which stayed attached to the volcano and drifted S. The ACC was lowered to Orange and the VAL was lowered to Watch on 8 August. Satellite images acquired on 8 August showed a significant expansion of the island towards the N with thick tephra deposits around the vent area forming a new crater lake. AVO reported that during 26 July-1 August no activity at Bogoslof was observed in partly cloudy to clear satellite images, and no activity was detected in seismic, infrasound, or lightning data. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 19-25 July no significant activity at Bogoslof was observed in cloudy or mostly cloudy satellite images, and no activity was detected in seismic, infrasound, or lightning data. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 12-18 July no significant activity at Bogoslof was observed in cloudy or mostly cloudy satellite images; weakly elevated surface temperatures were noted on 12 and 16 July. In addition no activity was detected in seismic, infrasound, or lightning data. The Aviation Color Code Aremained at Orange and the Volcano Alert Level remained at Watch.Avo reported that two new explosions occurred at the Bogoslof on 10 and 11 July. The first one consists of a series of explosions that began on July 10 at 7:47 UTC and ended on 10.07 at 10:35 UTC, the AVO has passed the alerts to RED / Warning. A small cloud of ashes associated with the first episode reached 6,000 meters, and quickly dissipated in a southeasterly direction. A rapid decline in seismicity around 11:00 UTC lowered alert levels to ORANGE / Watch. - The second period of activity began around 6 pm UTC: seismicity and infrasound were increased for 8 minutes. No significant emissions were detected by satellite.On July 11, at 01:06 UTC, the seismic network recorded an eruption that lasted about 15 minutes. No volcanic clouds, lightning or infrasound were detected. Alert levels remain unchanged until data is evaluated. AVO reported that an explosion at Bogoslof was detected at 0124 on 30 June and lasted about 20 minutes. A small cloud from the event drifted about 16 km N and by 1815 had dissipated. Seismicity declined afterwards but continued intermittently at low levels. Beginning at 1248 on 2 July a significant explosive event was detected in seismic and infrasound data. The event lasted about 16 minutes, and produced an ash plume that rose as high as 11 km (36,000 ft) a.s.l. and drifted E. AVO raised the Aviation Color Code (ACC) to Red and the Volcano Alert Level (VAL) to Warning. Following the eruption seismicity declined and no signs of volcanic unrest were detected in seismic, infrasound, on satellite data on 3 July; the ACC was lowered to Orange and the VAL was lowered to Watch. The ACC and VAL were again raised to Red and Warning, respectively, following an explosive event that began at 1651 on 4 July and lasted 13 minutes. An eruption cloud rose as high as 8.5 km (28,000 ft) a.s.l. and drifted SE. An 11-minute-long eruption began at 1907 on 4 July, producing a small cloud that rose 9.8 km (32,000 ft) a.s.l. and drifted SE. AVO reported that a new significant explosive eruption occurred at 20:48 UTC July 2 (12:48 AKDT July 2). AVO is raising the Aviation Color Code to RED and Alert level to WARNING for Bogoslof volcano. Satellite data and pilot reports shows a volcanic cloud with an estimated altitude of 36,000 ft asl moving towards the east. Seismic and infrasound data suggest that the ash emissions are no longer continuing. AVO reported that slightly elevated surface temperatures at Bogoslof were identified in satellite images on 23 June, and steam emissions were occasionally observed the previous week. Beginning at 1649 on 23 June a significant explosive event was detected in seismic and infrasound data that lasted about 10 minutes. It produced an ash plume that rose as high as 11 km (36,000 ft) a.s.l. and drifted 400-490 km E. The event prompted AVO to raise the Aviation Color Code (ACC) to Red and the Volcano Alert Level (VAL) to Warning. Four additional explosions were detected, during 1918-1924, 2013-2021, 2104-2112, and 2152-2155, though any resulting ash plumes were not detected above the cloud deck at 8.5-9.1 km (28,000-30,000 ft) a.s.l. On 25 June the ACC was lowered to Orange and the VAL was lowered to Watch. At 1645 on 26 June an eruption which lasted about 14 minutes produced an ash plume that rose 7.6 km (25,000 ft) a.s.l. Seismic and lighting data indicated that a significant explosion began at 0317 on 27 June, prompting AVO to raise the ACC to Red and the VAL to Warning. The event lasted 14 minutes, and produced an ash plume that rose 9.1 km (30,000 ft) a.s.l. and drifted NW. The ACC was lowered to Orange and the VAL was lowered to Watch later that day. Following a significant explosive eruption this 24 June at 0h49 UTC / 23 June 16h49 AKDT, the Bogoslof  has changed to a red aviation code. It produced a plume rising to about 36,000 ft, and was accompanied by a strong seismicity, flashes and infra-sons. The eruption lasted 10 minutes. The satellites located the volcanic cloud at 1:30 UTC, at 36,000 ft, moving northeast.AVO reported that elevated surface temperatures and a small steam emission at Bogoslof were identified in satellite images during 13-14 June. Weakly elevated surface temperatures were detected on 16 June, and a 13-km-long steam plume was visible on 18 June. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that a new lava dome at Bogoslof breached the surface of the ocean on or around 6 June, and was the first observation of lava at the surface since the start of the eruption that began in mid-December 2016. The dome was an estimated 110 m in diameter on 7 June, and then grew to 160 m in diameter by 9 June. An explosive eruption began at 0318 on 10 June with a series of short infrasound signals which then, starting at about 0416, transitioned into several minutes-long continuous seismic and infrasound tremor signals. The events generated an ash-rich cloud that rose to an estimated altitude of 10.4 km (34,000 ft) a.s.l. and drifted NW. The Aviation Color Code (ACC) was raised to Red and the Volcano Alert Level (VAL) was raised to Warning. The eruption ended at 0528. Satellite data indicated that at least part of the volcanic cloud was more ash-rich than most in the current eruption period. On 11 June AVO noted no detectable activity in seismic or infrasound data after the event the day before. The ACC was lowered to Orange and the VAL was lowered to Watch. Satellite image acquired on 10 June and a photograph from an observer aboard a jet aircraft on 11 June suggested that the lava dome was no longer above the surface of the water, and was destroyed during the 10 June event. A series of explosive events, each lasting 10-30 minutes, began at 1747 on 12 June and ended around 2035. Ash plumes rose 7.6 km (25,000 ft) a.s.l. and drifted SE. The ACC was raised to Red and the VAL was raised to Warning. At 0817 on 13 June a six-minute-long explosion was detected in seismic and infrasound data. A plume was not observed, likely because it was too small or below detection limits. The ACC was lowered to Orange and the VAL was lowered to Watch. AVO reported that a short-duration (less than 10 minute) explosion at Bogoslof began at 1842 on 31 May based on seismic and infrasound data. A volcanic cloud identified in satellite images rose 7.3 km (24,000 ft) a.s.l., drifted WNW, and dissipated over the Bering Sea. The explosion was preceded by a several hour-long swarm of very small earthquakes. Seismicity decreased in the hours prior to the explosion and remained below the detection threshold. A sulfur dioxide plume from an explosion on 28 May was visible in satellite data drifting over the Hudson Bay region of Canada on 2 June. A short-duration explosive event at 0750 on 5 June produced a small volcanic cloud observed by a pilot. Low-amplitude tremor was detected in seismic data beginning at about 1229 on 5 June but then decreased to background levels. A vessel in the area reported vigorous steaming and a white plume rising several thousand feet above sea level. A brief explosive event was detected at 0600 on 6 June. The event likely produced a low-level (less than 3 km or 10,000 ft a.s.l.) emission; a possible plume at 1.8 km (6,000 ft) a.s.l. was identified in a satellite image following the detection of the activity in seismic and infrasound data, but quickly dissipated. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. On 29 May the ash cloud continued to drift NE. No detectable activity was observed in data from seismic or infrasound stations located on nearby Islands, and no new activity has been observed in satellite data. The ACC was lowered to Orange and the VAL was lowered to Watch. AVO reported that the eruption at Bogoslof which began at 2232 on 16 May lasted about 73 minutes. Trace amounts of ash fell in the community of Nikolski on Umnak Island. Later that day the Aviation Color Code (ACC) was lowered to Orange and the Volcano Alert Level (VAL) was lowered to Watch; no further ash emissions were detected and seismicity was low. Satellite data showed that the event altered the N coastline of the island. The crater lake was breached with a 550-m-wide gap along the N shore, and the NE shore had been extended 300 m from new tephra deposits. AVO reported that an increase in seismic and infrasound activity from Bogoslof was detected from stations on nearby islands starting at 2232 on 16 May, suggesting the beginning of an explosive eruption. The Aviation Color Code (ACC) was raised to Orange and the Volcano Alert Level (VAL) was raised to Watch. A pilot reported an ash plume rising as high as 10.4 km (34,000 ft) a.s.l., and the Worldwide Lightning Location Network detected lightning associated with the cloud. The ACC was raised to Red and the VAL was raised to Warning. The eruption lasted about 73 minutes. On 19 April AVO noted that no new volcanic activity at Bogoslof had been detected in satellite, seismic, or infrasound data since a short-lived increase in seismicity on 15 April; AVO lowered the Aviation Color Code to Yellow and theVolcano Alert LevelIncreased seismicity at Bogoslof was recorded by stations on nearby islands starting around 1501 on 15 April, prompting AVO to raise the Aviation Color Code to Orange and the Volcano Alert Level to Watch. The seismic activity subsided a few hours later; there was no evidence of renewed eruptive activity from infrasound, lightning, or satellite data during 15-18 April. On 5 April AVO reported that the Aviation Color Code for Bogoslof was lowered to Yellow and the Volcano Alert Level was lowered to Advisory based on the absence of detected activity at the volcano for the past three weeks; the last large explosion occurred on 8 March. No significant volcanic activity was detected in seismic, infrasound, or satellite data during 6-11 April. AVO reported that no significant volcanic activity at Bogoslof was detected in seismic or infrasound data during 29 March-4 April, and satellite views were often obscured by clouds or showed nothing noteworthy. Weakly elevated surface temperatures were identified in satellite images during 28-29 March. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Warning. AVO reported that no significant volcanic activity at Bogoslof was detected in seismic or infrasound data during 22-28 March, and satellite views were often obscured by clouds or showed nothing noteworthy. Weakly elevated surface temperatures were identified in satellite images during 21-23 March. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Warning. AVO reported that no significant volcanic activity at Bogoslof was detected in seismic or infrasound data during 15-21 March, and satellite views were either obscured by clouds or showed nothing noteworthy. Slightly elevated surface temperatures were identified in satellite images during 16-17 and 20-21 March. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Warning. AVO reported that an explosive event at Bogoslof began at about 2236 on 7 March, indicated in seismic, lightning, and infrasound data, and lasted about three hours. Though ash was not immediately visible in satellite data, AVO raised the Aviation Color Code (ACC) to Red and the Volcano Alert Level (VAL) to Warning. Later, satellite images showed a large ash cloud rising to an altitude of 10.7 km (35,000 ft) a.s.l. and drifting E. This event was the first detected eruptive activity since 19 February, and more than 1,000 lightning strokes related to the volcanic eruption cloud were detected during this event, by far the highest number observed to date. In addition the seismic levels were among the highest detected since the beginning of the eruption. Satellite images from 8 March showed that the W part of the island had grown significantly. The ACC was lowered to Orange and the VAL was lowered to Watch on 9 March. Two earthquakes swarms were detected during 9-11 March; the first began at 1750 on 9 March and ended at 1400 on 10 March, and the second was detected from 1900 on 10 March to 0500 on 11 March. Mildly elevated surface temperatures were identified in satellite data during 10-11 March. A third swarm began at 0500 on 12 March. A short-duration event, from 1131 to 1143 on 13 March, produced a small ash cloud that rose to an altitude of 5.5 km (18,000 ft) a.s.l. and drifted SSW. AVO noted that after the event, the level of seismic activity declined and the repeating earthquakes, detected for much of the previous several days, stopped. Weakly elevated surface temperatures were observed in two satellite images from 13 March. A photograph taken by a pilot showed a low-level, billowy steam plume rising from the general area of the intra-island lake. AVO reported that a new explosive eruption began on March 8 at 7:36 UTC / 7 March at 22:36 AKST at Bogoslof, characterized by about three hours of significant ash emissions. Activity was observed via seismic, infrasonic and lightning detection networks. A large ash cloud was seen by the satellites, moving east to an altitude of 10,700 meters asl. The volcano remains at a high level of instability, and its current aviation alert level is red. AVO reported that no significant volcanic activity at Bogoslof had been detected in seismic, infrasound, or mostly cloudy satellite data during 22-28 February. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Warning.AVO reported that during 15-16 February cloud cover prevented satellite views of Bogoslof; no other data indicated eruptive activity. At 0955 on 17 February seismic data indicated the beginning of an explosive event, prompting AVO to raise the Aviation Color Code (ACC) to Red and the Volcano Alert Level (VAL) to Warning. Individual pulses of seismicity was recorded until 1140, and then afterwards seismicity was low. Satellite images and pilot observations indicated that an ash plume rose to an altitude of 11.6 km (38,000 ft) a.s.l. The event was also verified by infrasound and lightning data. Another short-lived explosive event began at 1546, detected in infrasound and seismic data. A volcanic cloud identified in satellite images rose as high as 7.6 km (25,000 ft) a.s.l. An explosion at 0450 on 18 February was detected in seismic, infrasound, and lightning data. The seismic data suggested that ash emissions lasted several minutes, and then seismicity decreased. A preliminary evaluation of satellite data indicated that a cloud rose at least as high as 7.6 km (25,000 ft) a.s.l.; the cloud drifted SW. On 19 February the ACC was lowered to Orange and the VAL was lowered to Watch. Later that day seismic and infrasound data recorded a series of short-lived explosive pulses during 1708-1745. The ACC was raised to Red and the VAL was raised to Warning. A plume identified in satellite images rose as high as 7.6 km (25,000 ft) a.s.l. and drifted 160 km SE over Unalaska Island. AVO geologists on the island described the cloud has having a white upper portion and a slightly darker lower portion. Storms in the region impacted data communications at AVO's facility in Dutch Harbor on 20 February, limiting AVO's ability to forecast and detect eruptions at Bogoslof. AVO reported that during 8-12 and 14 February cloud cover prevented satellite views of Bogoslof; no other data indicated eruptive activity. At 0724 on 13 February seismicity significantly increased, prompting AVO to raise the Aviation Color Code (ACC) to Red and the Volcano Alert Level (VAL) to Warning. Satellite images acquired through 0930 showed no ash emissions above the 3 km (10,000 ft) a.s.l. cloud deck, and no lightning was detected. AVO concluded that, despite the intensity of seismic activity, a significant ash emission was not produced during this event; the ACC was lowered to Orange and the VAL was lowered to Watch. AVO reported that no further emissions were detected at Bogoslof after an explosion at 0520 on 31 January; the Aviation Color Code (ACC) was lowered to Orange and the Volcano Alert Level (VAL) was lowered to Watch the next day. A burst of tremor lasting nine minutes was detected starting at 0457 on 3 February. A second burst, starting at 0533 and lasting 20 minutes, was also detected by infrasound instruments, indicating an explosion. No ash cloud was detected above the meteorological cloud deck in satellite data. An event that began at 1642 produced a small volcanic plume that drifted about 40 km N below an altitude of 7.6 km (25,000 ft) a.s.l. Seismic tremor significantly decreased later that evening. Weakly elevated surface temperatures were observed in two satellite images acquired on 5 February, possibly related to hot deposits from explosive activity the day before. On February 3, at 13:57 and 14:33 UTC, two episodes of tremor were detected; The second, accompanied by an infrasonic signal, indicates an explosion, without cloud of ash observed by satellite.Several short bursts of seismic activity were detected at 0520 and 0608 on 30 January. An infrasound signal accompanied the first event indicating an explosion; an eruption cloud was identified in satellite data at 0530, rising to an altitude of 6.1 km (20,000 ft) a.s.l. later that day AVO noted that bursts of explosive activity continued and intensified; more than 10 short-duration explosions were detected in seismic, infrasound, and lightning data. The Aviation Color Code (ACC) was raised to Red and the Volcano Alert Level (VAL) was raised to Warning. Ash plumes rose as high as 7.6 km (25,000 ft) a.s.l. and drifted 125 km SE. Trace amounts of ashfall and a sulfur odor were reported in Unalaska/Dutch Harbor (98 km E). By the next day the explosions had subsided or ended. Satellite images acquired on 31 January showed significant changes to the island. AVO stated that freshly erupted volcanic rock and ash had formed a barrier that separated the vent from the sea, suggesting that the change had resulted in the more ash-rich emissions occurring during 30-31 January. AVO reported that no further emissions were detected at Bogoslof after an explosion at 0453 on 24 January; the Aviation Color Code (ACC) was lowered to Orange and the Volcano Alert Level (VAL) was lowered to Watch the next day. An hour-long seismic increase began at 0134 on 25 January though no evidence of eruptive activity was evident. Based on lightning and seismic data an explosive event began at 0650 on 26 January, and another burst of seismicity was recorded at 0706. The ACC was raised to Red and the VAL was raised to Warning. An ice-rich cloud, first identified in satellite data at 0700, likely contained ash, and rose as high as 9.8 km (32,000 ft) a.s.l. and drifted SE at lower altitudes, and NE at altitudes above about 6.1 km (20,000 ft) a.s.l. The ACC was lowered to Orange and the VAL was lowered to Watch later that day. Lightning and seismic data again indicated an explosive event at 0824 on 27 January, prompting AVO to raise the Aviation Color Code (ACC) to Red and the Volcano Alert Level (VAL) to Warning. An ice-rich cloud that likely contained ash rose to an altitude of 7.6 km (25,000 ft) a.s.l. and drifted E; seismicity related to ash emissions remained elevated for 48 minutes. The ACC was lowered to Orange and the VAL was lowered to Watch later that day. AVO reported that an explosive event at Bogoslof began at about 1320 on 18 January, generating an ash plume that rose at least to an altitude of 9.4 km (31,000 ft) a.s.l. and drifted NE. The dark (ash-rich) plume was identified in satellite images and observed by a pilot, and produced lightning strikes and infrasound signals detected by sensors in Sand Point and Dillingham. Analysis of a satellite image suggested the presence of very hot material (lava) at the surface immediately surrounding the vent, which was the first such observation since the beginning of the eruption. AVO raised theAviation Color Code (ACC) to Red and the Volcano Alert level (VAL) to Warning. A second lower-altitude cloud was visible in satellite images around 1400, likely corresponding with an increase in seismic tremor that occurred from 1340-1355. The ACC was lowered to Orange and the VAL was lowered to Watch the next day. Another explosion was detected at 1317 on 20 January, following an approximately 30-minute-long increase in seismic activity, based on seismic data and lightning detected from the World Wide Lightning Location Network. Pilots observed an ash plume rising to an altitude of 11 km (36,000 ft) a.s.l. and drifting SE. Satellite images indicated an ice-rich plume and lava present at the vent. The ACC was raised to Red and the VAL was raised to Warning, but were again lowered one level to Orange and Watch, respectively, the next day. Several lightning strikes north of Bogoslof indicated that an explosive event began at 1409 on 22 January. An ash plume identified in satellite images rose to an altitude of 9.1 km (30,000 ft) a.s.l. The ACC was raised to Red and the VAL was raised to Warning, and again lowered one level the next day. Following a period of increasing seismicity, an explosive event began at 0453 on 24 January, as indicated in seismic data and lightning detection, prompting AVO to raise the ACC to Red and the VAL to Warning. Seven minutes later an ice-rich plume which likely contained ash rose too altitudes of 7.6-10.7 km (25,000-35,000 ft) a.s.l. and drifted E. AVO reported that photos taken by a pilot on 10 January showed Bogoslof covered with dark gray ash, and a roughly 300-m-diameter submarine explosion crater on the E side of the island. Unrest continued during 11-17 January. Two short-lived explosions (five to six minutes long) were seismically detected at 1123 and 1230 on 12 January and observed by pilots. The estimated altitudes of the first and second plumes were 5.5 and 4.4 km (18,000 and 14,500 ft) a.s.l., respectively. Seismicity again increased at 2126 on 14 January and remained elevated. Six explosive events were detected between 2216 on 14 January and 0350 on 15 January. No volcanic clouds were identified in satellite data, although one lightning strike was recorded at 2232 on 14 January. Increased seismicity on 17 January indicated minor explosive activity; steam plumes with minor amounts of ash rose no higher than 4.6 km (15,000 ft) a.s.l. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.The last eruption of this volcano took place from July 6 to 24, 1992. It had Volcanic Explosivity Index (VEI) of 3 and produced a new dome.Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions.The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883. (USGS-AVO)

****************************************************************************************************************************************************************************************************

U.S.A. - Shishaldin volcano (Alaska)

January 16th, 2021

AVO reported that several outages affected GPS, seismic, and infrasound stations used to monitor Shishaldin. On 15 January AVO changed both the Aviation Color Code and the Volcano Alert Level to Unassigned, reflecting the lack of this data to detect unrest. The volcano continued to be monitored with local webcams, satellite data, and remote infrasound, seismic, and lightning networks. Previous news 2020 - On 24 June AVO reported that seismicity at Shishaldin had decreased to background levels. Additionally, satellite images showed no new lava in the crater area, typical surface temperatures, and minor steaming. The Volcano Alert Level was lowered to Normal and the Aviation Color Code was lowered to Green. AVO issued an advisory volcanic alert and Yellow aviation code, the troubles continue with possible sulfur dioxide emissions detected by satellite and vapor in the crater visible on high resolution satellite images. The views of the web cameras were obscured by the clouds and no significant activity was detected on local seismic stations or regional infrared sensors. Although disturbances are currently at low levels, activity could intensify with little warning, and additional eruptive activity in the summit crater, lava flows, lahars and ash-producing eruptive events could happen.On 16 April AVO reported that seismicity at Shishaldin had decreased during the past two weeks, though it remained slightly above background levels. Additionally, satellite images showed no new lava nor changes in the crater area, and a decrease in surface temperatures. The Volcano Alert Level was lowered to Advisory and the Aviation Color Code was lowered to Yellow. AVO reported elevated seismicity at Shishaldin during 8-13 April characterized by occasional low-frequency earthquakes. Minor steaming from the summit crater was sometimes seen in satellite and webcam data. A small thermal anomaly was visible in satellite data during 8-9 April. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. AVO reported elevated seismicity at Shishaldin during 1-7 April 2020 characterized by weak continuous tremor and occasional low-frequency earthquakes. The webcam recorded steam plumes rising from the summit crater on 1 April. Weakly elevated surface temperatures were visible in satellite images on a few days. The Volcano Alert level remained at Watch and theAviation Color Code remained at Orange. AVO reported elevated seismicity at Shishaldin during 25-31 March characterized by continuous low-level tremor. Steam-and-gas plumes rising from the summit crater were occasionally recorded by the webcam and identified in satellite images. Weakly- to- moderately elevated surface temperatures were identified in satellite images during 29-30 March. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. AVO reported that seismicity remained high with low level continuous tremor recorded in the past week.A weak gas plume was commonly observed on webcam images when the views were clear, and high surface temperatures were observed on satellite images.Eruptive activity appears to be confined to the summit area during this latest period of unrest, which began in mid-March. However, activity could increase with little or no warning, causing lava flows outside the crater, lahars and ash emissions.The volcanic alert is Watch, and the aviation code orange. AVO reported that seismicity at Shishaldin was characterized as near-continuous tremor during 18-20 March and continuous tremor during 21-24 March. Steam-and-gas plumes rising from the summit crater were recorded daily by the webcam and sometimes identified in satellite images. Elevated surface temperatures, consistent with lava in the summit crater, were also identified in satellite images. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. AVO reported that eruptive activity continues at Shishaldin. Minor explosive activity has decreased over the past 24 hours, but seismicity remains high with almost continuous tremors. Satellite views have been obscured by clouds, and a small plume of vapor from the summit has been observed in a clear web camera image in the past 24 hours. At this time, eruptive activity appears to be confined to the summit area, but activity could increase with little or no warning, causing lava flows outside the crater, lahars, and ash emissions. The current aviation color code: ORANGE. AVO reported that weak but elevated seismicity was also recorded along with small explosion signals during 14-17 March. Elevated surface temperatures, consistent with lava in the summit crater, were identified in satellite images during 15-17 March. A small steam plume rising from the summit crater was visible in a webcam image on 17 March. AVO raised the alert level of the Shishaldin to Watch and the aviation code to orange on March 14 at 10:31 pm, following the observation on a high resolution satellite image of lava, and of what appears to be a new cone in the summit crater. A weak tremor is also detected. On 6 February AVO reported that seismicity at Shishaldin decreased during the previous week (though remained slightly above background levels), along with the surface temperatures at the summit identified in satellite data. AVO lowered the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory since the eruption appeared to have paused or ceased. AVO reported that seismic activity at Shishaldin remained above background levels during 29 January-4 February. Weakly- to moderately-elevated surface temperatures were sometimes identified in satellite images. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.AVO reported that seismic activity at Shishaldin remained above background levels during 22-28 January. Elevated surface temperatures continued to be identified in satellite images, though became weak during 26-28 January. Infrasound data suggested that minor explosions were occurring at the summit during 22-23 January. Small steam plumes from the summit were visible on 22, 23, and 26 January. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that during 20-21 January elevated surface temperatures were identified in satellite images, though the N-flank flow was not active. Seismicity remained above background levels, and coincided with detections in infrasound data that suggested small explosions at the vent. Steaming from the summit was visible in webcam images. AVO reported that seismicity dropped sharply to low levels around 3:30 p.m. on January 19, 2020, and ash production increased at about the same time, producing an ash plume that reached 9,000 meters. The eruption continued to produce ash until about 10:00 p.m. when activity slowed. High surface temperatures are still apparent on the satellite images this morning. Webcam images captured after sunrise on the southeast side of the volcano show a weak plume of vapor at the top, new tephras and / or lava deposited on the upper flanks of the cone and a dusting of ash on the snow throughout the area.AVO reported that an increasing in seismicity was observed on January 7, 2020 around 5 a.m. AKST, accompanied by ash emissions; the ash cloud was visible on satellite images at a height of 7,000 meters, drifting east-northeast. The seismicity then weakened for a few hours, before increasing sharply. The plume was loaded with ashes, justifying an increase in warning levels to red aviation code, around 14:20 AKST. Satellite images show very high surface temperatures, and three lava flows are observed; volcanic lightning and infrasound are detected by regional measurement stations. Around 24:00 AKST, the seismicity fell again, and the ash emissions decreased. The alerts returned to Watch, with an orange aviation code. Ash falls are expected on the communities located to the northeast. AVO reported that the volcano still produces lava flows on the upper flanks and is the site of a short-lived explosive activity. This December 3 around 9:30 am AKST, the seismicity started to increase, to lead to a brief period of emission of ash; the ash cloud reached an altitude of 7,300 meters asl.drifting southeast, with lightning bolts. The seismicity then abruptly decreased. Thermal anomalies considered as very high, with a maximum at 1443MW, indicating a continuous effusion. The aviation code is maintained at Orange, accompanied by a SIGMET up to an altitude of 7,300 meters established by the National Weather Service. Previous news 2019 - AVO reported that the eruption at Shishaldin continued during 25-31 December. Seismicity was elevated with weak explosions recorded by the network during 26-27 December. The seismicity decreased to relatively low levels on 27 December and remained low through 31 December. Strongly elevated surface temperatures were periodically identified in satellite images, indicating continuing lava effusion; AVO reported that low-level explosive activity continued near the summit and effusion of short lava flows. Elevated seismicity and surface temperatures were recorded throughout the week. Satellite images December 25 and 26 confirmed an active lava flow extending ~1.5 km (1 mile) to the northwest and tephra deposits on the upper flanks of the volcano. Weak explosions were detected on a regional infrasound network over the last 24 hours. AVO reported that the eruption at Shishaldin continued during 18-24 December. Elevated surface temperatures were identified in satellite images, though clouds sometimes prevented views. Seismicity remained elevated and was characterized by ongoing tremor and periodic weak explosions. Satellite imagery indicated that the active summit cone had grown after collapsing the week before. Minor ash emissions drifted S on 19 December and E at 4.6 km (15,000 ft) a.s.l. on 21 December. The Aviation Color Code remained at Orange and theVolcano Alert Level remained at Watch.As of the 21st of December AVO reported that the low-level eruption continued. Seismicity remains elevated. Elevated surface temperatures were observed in partly cloudy satellite data. Minor ash emissions were reported drifting east at ~15,000 ft from the volcano's summit consistent with low-level eruptive activity. On the morning, increasing tremor coincided with a field team in Cold Bay reporting a new lava flow on the northern slope of the volcano.As of the 19th of December, AVO reported that the eruptive activity started at the end of July in Shishaldin continues, with this week a lava flow reaching about 2,500 meters on the northwest flank. Explosive low-level activity rebuilt the summit cone, which had collapsed a week before, and covered with ash the southern flank of the volcano.High surface temperatures were observed in the first part of the week, before decreasing while the activity of the lava flows decreased. The seismicity on the volcano remains high, with continuous tremors and weak explosions. AVO reported that the seismicity remained elevated through 16 December and elevated surface temperatures continued to be detected. A plume appearing to contain ash drifted from the summit on 14 December. A lava flow was reported by a pilot on 16 December; the next day satellite images showed a 2-km-long flow on the NW flank. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that eruptive activity intensified on December 13, with a possible collapse of the spatter cone and lava flows on the north and northwest flanks. The episode was accompanied by an ash cloud at 7,600 meters asl. Surface temperatures are observed by satellite.A plume of steam was visible at the top, as well as night glow. As of the 12th of December, AVO reported that a small eruption occurred and produced a plume of ashes reaching 6000-7600 meters asl, dispersing to the northwest.A burst of tremor was observed on December 12 at 7:10 a.m. local (4:10 p.m. UTC) and lasted 3 minutes, as well as lightning. A flow is visible on the satellite images and on the photos taken from Cold Bay. AVO reported that the eruption either slowed or paused during 6-7 December as evidenced by decreased seismicity and slightly elevated surface temperatures in satellite data. Temperatures again increased and were slightly elevated during 7-9 December, likely signifying renewed lava effusion. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that the thermal anomalies recorded on December 5 at Shishaldin are consistent with an ongoing lava effusion. The continuous tremor is also rising. Small emissions of steam and a little ash are observable by the webcam on the summit and the north flank. AVO reported that on December 4 afternoon and evening high surface temperatures, related to an effusion of lava, confirmed by an increase in seismicity. A lava flow on the flank of the volcano was observed by a pilot; no ashes were emitted. AVO reported that seismic levels at Shishaldin were variable but elevated during 26 November-3 December. Weather clouds sometimes obscured satellite image views and mostly prevented webcam views, though elevated surface temperatures were still visible in multiple satellite images. An active 1.5-km-long lava flow on the NW flank was visible in satellite images on 1 December. Continuous tremor transitioned to episodic bursts during the morning of 2 December, but by 3 December a decrease in seismic activity and surface temperatures suggested another pause in lava effusion. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. Satellite image analysis indicates that a partial collapse of the summit cone occurred early on November 25th. This resulted in a pyroclastic flow extending up to 3 km from the summit, on the northwestern side of the volcano. A new lava flow was also generated during this period of activity that extended for 1 km along the northwest flank of the volcano.Seismicity decreased but remained elevated during 25-26 November. Strongly elevated surface temperatures were identified in multiple satellite images, and incandescence from the summit was occasionally visible in web camera images overnight. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that seismicity increased during the day of 25 November and small explosions were detected at local and regional infrasound stations. Very high surface temperatures were observed in several images. Together, these data indicate that low-intensity eruptive activity has resumed in Shishaldin. No ash plume has been detected. A partial collapse of the summit cone sometime around 1430 on 24 November produced a pyroclastic flow that traveled as far as 3 km down the NW flank. A new lava flow on the NW flank was several hundred meters long. AVO reported that the eruption at Shishaldin continued at variable levels during 13-19 November. Seismicity increased during 13-14 November, and elevated surface temperatures were visible in satellite and webcam data. Minor ash emissions were visible and likely resulting from spatter cone collapses. Lava and debris flows had not advanced since 8 November; lava flows had traveled as far as 1.2 km and a large branched network of debris flows extended at least 5.5 km NE. Strongly elevated surface temperatures and a steam plume drifting more than 100 km SE were visible on 15 November. An incandescent lava flow on the NE flank was recorded in webcam images. Activity during 17-18 November was characterized by low seismic tremor and weakly-to-moderately elevated surface temperatures, consistent with cooling lava flows. Seismicity and surface temperatures again increased during 18-19 November. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that activity significantly increased during 10-11 November with lava fountaining visible in webcam views throughout the evening and night. Strongly elevated surface temperatures at the summit and along the flanks were visible in satellite data. Ash emissions reported by pilots and visible on webcam images rose as high as 3.7 km (12,000 ft) a.s.l. and drifted N. Activity decreased during 11-12 November. Strongly elevated surface temperatures were consistent with cooling lava flows. Seismicity decreased during the evening of 11 November and remained low. Minor steam-and-ash emissions were visible in webcam images. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. .Since November 10th, high surface temperatures have been reported at the summit and on the flanks. Thermal anomalies were measured by Mirova on November 11, between 446 and 1,652 MW.Seismicity has increased over the past few days to find lower levels today. AVO reported that eruptive continued; the lava overflows the crater and feeds a flow on the north-west flank in elongation. This one developed in two branches on November 3rd each of them extending on approximately 1.000 meters. Debris flows / lahars also extended, extending up to 2 km on the north and south flanks; Sporadic glow was observable at night on webcams, and satellites showed hot spatter deposits on the summit cone in relation to explosive activity and / or fountaining. Small explosions were observed on the seismic and infrasonic networks. The volcanic alert remains at Watch and the aviation code at orange A pilot observed a lava flow in the morning of 2 November. Sporadic incandescence recorded by the webcam overnight during 2-3 November suggested minor explosive activity and/or lava fountaining. On 3 November lava overflowed the summit crater and traveled at least 400 m down the NW flank and 300 m down the SE flank. By 4 November the flow on the NW flank had branched and lengthened to 1 km. Lahars were as long as 2 km on the N and S flanks. Spatter deposits from explosions or fountaining were visible on the summit cone. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that Low-level eruptive activity continued during 26-29 October. Seismicity remained elevated, with periods of high-amplitude tremor. Small explosions were recorded during 27-28 October. A satellite image from 28 October showed a 850-m-long SWIR anomaly on the NW flank from a lava flow. A central spatter cone was visible. Spatter deposits on the snow at the upper flanks was evident, and tephra deposits extended about 2.5 km N. The lahar on the NW flank branched extensively at lower elevations and was at least 5 km long. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that satellite data from October 23 showed that the lava now fills the summit crater and begins to sink on the edge of the north crater at two locations.On October 24th, a 200 m (600 ft) long lava flow melted the snow and produced a large 2.9 km (1.8 mile) lahar which spreads on the north flank, reaching about 1230 m. m (~ 4000 ft) altitude. A small lava flow produced a lahar about 1 km long on the northeast flank.The 2857-m-high, glacier-covered volcano is the westernmost of three large stratovolcanoes along an E-W line in the eastern half of Unimak Island. The Aleuts named the volcano Sisquk, meaning "mountain which points the way when I am lost." A steady steam plume rises from its small summit crater. Constructed atop an older glacially dissected volcano, it is Holocene in age and largely basaltic in composition. Remnants of an older ancestral volcano are exposed on the west and NE sides at 1500-1800 m elevation. There are over two dozen pyroclastic cones on its NW flank, which is blanketed by massive aa lava flows. Frequent explosive activity, primarily consisting of strombolian ash eruptions from the small summit crater, but sometimes producing lava flows, has been recorded since the 18th century. Webcam . (GVN/GVP)

USA - Cleveland volcano (Alaska)

March 30th, 2021

AVO reported that a magnitude 4.3 earthquake at Cleveland was recorded during the morning of 26 March. Smaller earthquakes continued to be detected that day at a decreasing rate. There have been no signs of activity observed in infrasound or satellite data, nor evidence of volcanic gas emissions and elevated surface temperatures due to clouds. The Aviation Color Code remained at Yellow and the Volcano Alert LevelAVO changed the Cleveland aviation code, in the Aleutian volcanic arc, to yellow, and the volcanic alert to advisory on March 20, 2021 at 9.44 p.m. Z. Satellites have detected an increase in volcanic gas emissions and high surface temperatures since March 2020. A local earthquake on March 10 was measured by seismometers 100 km away on Umnak Island, indicating a potential rise in activity. Previous news 2020 - AVO reported that unrest at Cleveland likely continued during 10-16 June, though no activity was identified in cloudy satellite images nor detected by regional geophysical networks. AVO noted that local seismic, infrasound, and web camera data are unavailable due to an equipment failure, Cleveland continued to be monitored with regional seismic and infrasound stations on nearby islands, along with lightning and satellite data capabilities. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. No significant volcanic activity was noted in often cloudy satellite views during 2-9 June; a steam plume was visible on 3 June. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. AVO reported that a small explosion occurred on June 1st at 10:32 am AKST; it was detected by the infrasonic surveillance network, the local surveillance stations being offline. It was accompanied by a small plume of ash observed at more than 6,000 meters asl. drifting south. Aviation code is orange. AVO reported that this eruption at Cleveland on 1 June destroyed the January 2019 lava dome and ejected a large amount of material from the summit crater. Volcanic debris flows traveled about 2.9 km down the E flank and more than 2.7 km down the N flankAVO lowered both the Volcano Alert Level and the Aviation Color Code for Cleveland to Unassigned on 7 May, noting that explosive activity on 9 January 2019 (and subsequent lava extrusion in the summit crater) was followed by an overall decrease in detected surface temperature and no further surface changes. Previous news 2019 - AVO lowered the Volcano Alert Level for Cleveland to Advisory and the Aviation Color Code to Yellow on 15 November, noting that new satellite data and reanalysis of previous data over the past week showed that lava effusion likely had not begun on 8 November. Regional seismic and infrasound data showed no evidence of eruptive activity during 8-19 November; weakly-to-moderately elevated surface temperatures were sometimes identified in satellite images and steam plumes were sometimes visible in webcam images. AVO reported that the aviation color code was raised to ORANGE and the WATCH volcano alert level by AVO in the day of November 8, 2019, regarding images from satellite that the slow lava spilling into the summit crater had probably begun. High surface temperatures have been observed throughout the week and their intensity has increased significantly over the past day. Mirova recorded thermal anomalies on November 8 of 6 and 2 MW.This activity is interpreted as being due to the recovery of the lava effusion. Vigorous steam has been observed in the webcam data over the last few days, which also corroborates the interpretation that the lava has been erupted. The presence of a lava dome in the summit crater can be used to pressurize the system, which could lead to a small explosive event and associated minor ash emissions. Previously, AVO reported that unrest at Cleveland continued during 20-24 February, though no activity was detected in seismic or infrasound data. Elevated surface temperatures were identified in satellite images; weather clouds sometimes prevented views of the volcano. Satellite data showed continued subsidence of the lava dome with no evidence of new lava. On 25 February the Aviation Color Code was lowered to Yellow and the Volcano Alert Level was lowered to Advisory. AVO reported that unrest at Cleveland continued during 13-19 February, though no activity was detected in seismic or infrasound data. Elevated surface temperatures were identified in satellite images; weather clouds sometimes prevented views of the volcano. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that analysis of recent satellite data suggested that the lava dome in Cleveland’s summit crater first observed on 12 January may have stopped growing on 16 January, and since then the center of the dome slowly subsided. Weakly elevated surface temperatures were evident in satellite data during 28 January-4 February. The Aviation Color Code remained at Orange and the volcano alert level remained at Watch.During the past week, the latest satellite observations showed of high surface temperatures date from January 19-20, before the views of the volcano were obscured by clouds. No explosion was recorded by the seismic station and the infrasonic system.The aviation code remains orange, the possible explosions of the dome may present a danger for aviation. AVO has raised the alert level to Watch, and its aviation code to Orange on January 17, 2019. Satellite data show the existence and growth of a new lava dome since January 12, and its presence could be linked to explosive activity, commonly noticed without warning. AVO reported that a brief explosion was detected this December 29, 2018 at 3:17 UTC / December 28 at 18:17 AKST in Cleveland; a cloud of ash was spotted by a pilot at an altitude of 17,000 ft asl .Typical explosions of this volcano, small clouds of ash dissipate within hours of their emission. The aviation code is orange. AVO reported that elevated surface temperatures were visible in satellite data on 15 December. A new small explosion which occurred at 0737 on 16 December generated a minor ash cloud that drifted NE. AVO reported that a small explosion was detected by the local seismic network in Cleveland, in Aleutian Islands, on 12 December at 11:53 am AKST / 20:53 UTC, justifying a watch / orange warning adjustment. The weather conditions did not allow the observation of n ash cloud. Previously, Low-level unrest at Cleveland continued, though on 22 August AVO noted a pause in activity and lowered the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory. Another small explosion at Cleveland was recorded by the seismic network at 1155 on 8 December. The report noted that elevated surface temperatures were identified in satellite images the previous day, suggestive of hot gas emissions from the summit crater vents. AVO reported that unrest at Cleveland continued during 15-20 August, though nothing significant was detected in seismic or infrasound data. Steaming from the crater was sometimes visible in clear webcam views, and elevated surface temperatures were occasionally identified in satellite images. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. .The 1730-m-high Mt. Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mt. Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks of the volcano. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions from Mt. Cleveland have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks. Webcam

USA - Gareloi volcano (Alaska-Aleutian islands)

July 30th, 2021

AVO reported that the elevated seismicity first detected at Gareloi in May had continued through June and then declined to background levels. On 28 July the Aviation Color Code was lowered to Green and the Volcano Alert Level was lowered to Normal.AVO reported that a minor increase in seismicity was first detected at Gareloi on 19 May. Beginning on 27 May the rate and size of small volcanic earthquakes increased and was sustained at that level. On 8 June AVO raised the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory based on seismicity rising above baseline levels. Sulfur dioxide emissions had been identified in satellite images the past week, though they were consistent with measurements recorded in previous years. No other changes were evident in satellite or webcam views. The 8 x 10 km Gareloi Island, the northernmost volcano of the Delarof Group at the western end of the Andreanof Islands, consists of a stratovolcano with two summits and a prominent SE-trending fissure. The fissure was formed during an eruption in 1929 and extends from the southern summit to the sea. Steep sea cliffs that are cut into rocks of an older, eroded center are found on the SW coast, and submarine deposits of three debris avalanches produced by edifice collapse are found offshore. Young lava flows cover the older volcano from the summit to the coast along three broad axes trending NW, ENE, and S. The 1929 eruption originated from 13 craters along a 4-km-long fissure. Phreatic explosions were followed by the ejection of glassy pumice, lapilli, scoria, and older blocks, as well as by the emission of four short, steep lava flows, one of which reached the SE coast.(GVN/GVP)

USA - Great Sitkin volcano - Andreanof Island (Alaska-Aleutian Islands )

September 8th, 2021

AVO reported that elevated surface temperatures at Great Sitkin and daily small earthquakes were detected during 31 August-7 September, consistent with the growing lava dome. Gas plumes were observed almost daily in satellite data. The Aviation Color Code and the Volcano Alert Level remained at Orange and Watch, respectively.AVO reported that the lava dome at Great Sitkin continued to grow, reaching 880 m in diameter by 25 August and 1,090 m during 28-29 August. Elevated surface temperatures and small earthquakes were detected during 25-31 August, consistent with the growing dome. Daily steam-and-gas plumes were observed in satellite data and by local observers. The Aviation Color Code and the Volcano Alert Level remained at Orange and Watch, respectively.AVO reported that the lava dome at Great Sitkin remained active during 17-24 August; satellite imagery showed changes from a diameter of 800 m on 17 August to 850-860 m throughout 18-21 August. Elevated surface temperatures and daily small earthquakes were consistent with an active dome. Gas-and-steam plumes were visible to local ground observers and in satellite imagery during 20-22 and 24 August. As of the 16th of August, AVO reported that high surface temperatures and small earthquakes were detected during the last day at the Great Sitkin volcano, which corresponds to the continued growth of a lava dome. Satellite imagery on 16.08 at noon showed that the lava dome is now greater than 700 m in diameter. (against 380 m. on 08/09). A plume of steam and gas could be seen above the summit on satellite images and by ground observers. No explosion or ash emission was detected. The current volcanic alert level remains at Watch and the aviation code at Orange. As of the 14th of August, AVO reported high surface temperatures and small earthquakes were detected during the last day at the Great Sitkin volcano, which corresponds to the continued growth of a lava dome. A plume of steam and gas could be seen above the summit on clear satellite images from the web camera. No explosion or ash emission was detected.As of the 13th of August, AVO reported that the eruption of a lava dome in the summit crater of the Great Sitkin volcano continued over the past week. Satellite data showed the dome grew from around 300m in diameter on August 6 to around 380m on August 9. Plumes of steam were visible in satellite and web camera images, but no ash emission was detected. Small earthquakes were detected which are probably associated with the lava effusion. No explosive activity was detected. There is no indication of how long the lava flow lasted during the current eruption, and it is possible that explosive activity could occur with little or no warning. The volcanic alert remains at Watch and the aviation code at Orange. AVO reported that incandescence was visible over the growing lava dome of Great Sitkin on Friday evening (August 6) around 10:30 p.m., along with a robust plume of steam. High surface temperatures were seen on a satellite image, but all other satellite and webcam views of the volcano over the past day have been obscured by clouds. The high surface temperatures are the result of an effusion of lava in the summit crater. The dome was measured, using satellite radar images, over 230 m in diameter as of Thursday, August 5. As of the 5th of August, AVO reported that unrest continues at the Great Sitkin volcano. During the last day, numerous earthquakes and small explosions were recorded on local infrasound and seismic stations. The dome has been expanding since mid-July and the last explosive event was on May 25, 2021. AVO is monitoring and using satellite imagery to measure the rate of growth. It now measures more than 100 meters in diameter. At night, the people of Adak about 26 miles across the water report the plume of steam lit by the incandescent lava atop the dome. On August 5, local observers reported a low-level lava fountain at the active vent that was also visible from Adak Island. A robust volcanic cloud was observed in web camera views of the volcano throughout the day. This cloud extends north-northeast below about 10,000 feet above sea level. It is probably composed mainly of volcanic gases and water vapor, but could include some amount of ashes. AVO reported that unrest continued at Great Sitkin during 28 July-3 August. Seismicity remained elevated and a small swarm was recorded during 1-2 August. Elevated surface temperatures and a north-drifting steam plume were identified in satellite images during 27-28 July. Minor steam emissions were visible during 31 July-3 August. The circular lava dome in the crater had grown to 180 m in diameter based on measurements taken using a 3 August satellite image. The Aviation Color Code and the Volcano Alert Level remained at Orange and Watch, respectively.Recent images have shown a new circular lava dome growing in the crater of Great Sitkin Volcano. On July 26, 2021, the dome is about 130 m diameter, and growing since first observed July 22. The most recent explosive eruption event was May 25th.A satellite radar image from last night on July 22 at 9:32 p.m. (July 23 05:32 UTC) shows a small area of ​​uplift about 50 m (~ 150 ft) in diameter at the center of Great Sitkin crater suggesting a magma rise near the surface. This lava dome-like feature appears to have been in place between July 14-22. As a result, AVO is increasing the Aviation Color Code to Orange and the Volcanic Alert Level to Watch. Seismicity has been at relatively low levels this week compared to last week and we suspect the lava dome feature was put in place last week. Moderately high surface temperatures consistent with this feature were observed in satellite data on July 22. Cloudy conditions have obscured satellite views of the volcano for most of the past week. AVO will continue to closely monitor this new uplift feature. Previously, AVO reported that fter the latest explosive eruption at the volcano on 27th of May, seismic activity has decreased gradually although volcanic unrest continues as reported local observatory Alaska Volcano Observatory (AVO). Surface temperatures continue at elevated levels identified in satellite data. No ash emissions are observed from surveillance cameras. Prognosis for renewed eruptive activity is uncertain.AVO reported that a short-lived (1-2 minute) explosive eruption began at 9:04 p.m. AKDT (5:04 a.m. UTC May 26) at the Great Sitkin in the Aleutians, resulting in an ash cloud reaching 4,500 m. asl. Since this explosion, the seismicity has decreased and satellite images show that the ash cloud has broken away from the vent and is moving east. Additional explosions are possible and the aviation color code has been changed to red from 25.05 at 9:30 p.m. to 26.05 at 8:31 a.m., before changing back to orange, and the volcanic alert level on Watch. AVO reported that elevated surface temperatures at Great Sitkin had been identified in satellite images since January and had been increasing in frequency during the previous two months. A minor increase in seismicity began to be recorded on 9 May and volcanic gas emissions increased on 10 May. AVO raised the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory on 12 May. AVO reported that high surface temperatures were seen on satellite images of the Great Sitkin volcano in the Aleutians from January and detections have increased in the past two months. Satellite detections of an increase in volcanic gas emissions were observed from May 10. In addition, there has been a slight increase in local seismicity over the past two days. These data indicate a potential for increased eruptive activity at Great Sitkin. As a result, AVO increases the Aviation Color Code to YELLOW and the Volcano Alert Level to ADVISORY. The 1740-m-high Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The 1740-m-high summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 meters. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded at Great Sitkin since the late-19th century. (GVN/GVP) Webcam

U.S.A - Pavlof volcano (Alaska)

September 8th, 2021

AVO reported that seismicity at Pavlof was low, though elevated above background levels during 31 August-7 September. Inclement weather sometime prevented satellite and webcam views of the volcano. A sulfur dioxide plume was visible in satellite images on 2 September. The Volcano Alert Level and Aviation Color Code remained at Watch and Orange, respectively.
AVO reported that several small daily explosions at Pavlof were recorded by seismic and infrasound sensors during 24-26 August. A pilot observed an ash plume from an explosion that rose to 3.7 km (12,000 ft) a.s.l on 25 August. Seismicity was relatively quiet during 27-31 August; elevated surface temperatures continued to be recorded on most of those days. One explosion on 28 August produced an ash emission visible in webcam data. The Volcano Alert Level and Aviation Color Code remained at Watch and Orange, respectively.AVO reported that occasional small explosions and elevated seismicity at Pavlof were detected in geophysical data during 18-19 August; clouds often obscured the view of the volcano. Observations from webcams and pilots indicated minor low-level ash. emissions during 18-19 August. Weakly elevated surface temperatures were frequently detected during 18-22 August in the active vent. AVO reported that several small daily explosions at Pavlof were recorded by seismic and infrasound sensors during 10-17 August. The vent producing the explosions was possibly near the 2007 vent location on the upper SE flank. Small ash emissions, visible in webcam images and occasionally observed by pilots, dissipated quickly and likely deposited ash no further on the upper flanks. The Volcano Alert Level and Aviation Color Code remained at Watch and Orange, respectively.As of the 14th of August, AVO reported that Three small explosions were detected on the infrasound sensors of the Pavlof volcano during the last day. Web camera footage this morning confirmed a small ash emission from the most recent of them. Like all other explosions seen during the current eruption, the ash appeared to dissipate quickly and the deposits were confined to areas near the vent.AVO reported that minor daily ash emissions continued to be observed in webcam images during 5-9 August. The seismic network recorded elevated seismicity (tremor) and small explosions. Several small explosions were recorded during 8-9 August though weather clouds prevented satellite and webcam views.AVO reported that unrest continues and minor ash emissions just above the top of the volcano were observed on August 5, 2021. Seismic tremors and small explosions were detected by local seismic and infrasound instruments. The ash emissions observed were of limited extent and probably only produced local fallout on the southeast flank of the volcano. Ash emissions indicate an active eruption in progress, so the Alaska Volcano Observatory is raising the Aviation Color Code and Alert Level to ORANGE / WATCH.
AVO reported that the status of the Pavlof volcano changed from green to yellow / Advisory alert level on July 9th, 2021 at 11:40 a.m. The seismic activity has increased during the last day and is characterized by an almost continuous tremor. The tremor has also been observed in infrasound and regional seismic data. No eruptive activity or emission from the summit was observed in cloudy views from satellites and web cameras. The increase in seismicity doesn't mean an eruption is imminent, but the Pavlof's past eruptions have occurred with little to no warning. However seismicity decreased and was more periodic during 10-13 July, but remained above background levels. Previous news 2020 - As of the 22nd of October, AVO reported that no seismic tremor at Pavlof had been recorded during the previous two weeks, nor had eruptive activity or unusual surface temperatures been observed in satellite and webcam images. The Volcano Alert Level and Aviation Color Code were lowered to Normal and Green, respectively, on 14 October. As of the 22nd of September, AVO reported that seismic activity at the volcano has increased over the past 24 hours. The seismic activity was characterized by continuous tremor.No eruptive activity or emissions from the summit have been observed in cloudy satellite and web camera views.The alert level for the volcano was raised to "yellow", as an increase of volcanic tremor has been recorded. AVO reported that seismic activity at Pavlof had decreased during the past several weeks, and no eruptive activity or summit emissions had been observed since minor steaming in late February. AVO lowered the Volcano Alert Level to Normal and the Aviation Color Code to Green on 3 March. The most active volcano of the Aleutian arc, Pavlof is a 2519-m-high Holocene stratovolcano that was constructed along a line of vents extending NE from the Emmons Lake caldera. Pavlof and its twin volcano to the NE, 2142-m-high Pavlof Sister, form a dramatic pair of symmetrical, glacier-covered stratovolcanoes that tower above Pavlof and Volcano bays. A third cone, Little Pavlof, is a smaller volcano on the SW flank of Pavlof volcano, near the rim of Emmons Lake caldera. Unlike Pavlof Sister, Pavlof has been frequently active in historical time, typically producing Strombolian to Vulcanian explosive eruptions from the summit vents and occasional lava flows. The active vents lie near the summit on the north and east sides. The largest historical eruption took place in 1911, at the end of a 5-year-long eruptive episode, when a fissure opened on the N flank, ejecting large blocks and issuing lava flows.(GVN/GVP) Webcam

U.S.A. - Veniaminof volcano (Alaska)

July 10th, 2021

AVO changed both the Aviation Color Code and Volcano Alert Level for Veniaminof to Green and Normal, respectively, on 8 July, noting that seismic stations were back online. The monitoring network consists of local and regional seismic stations, regional infrasound networks, lightning detection, and satellite image monitoring.AVO reported that eruptive activity at Veniaminof had declined during the previous few weeks; no emissions were visible after ash emissions on 5 April and seismicity continued to decline. On 21 April the Volcano Alert Level was lowered to Advisory and the Aviation Color Code was lowered to Yellow. Likely low level ash emissions were observed on 6th of April in web camera views from the summit of Veniaminof. Seismic activity remains high. Due to the renewed activity, AVO was raising the Aviation Color Code to ORANGE and the Volcano Alert Level to Watch. The Alaska Volcano Observatory continues to monitor Veniaminof with a local seismic network, remote infrasound and lightning networks, as well as satellite and webcam images.AVO reported that during clear weather days on 25, 28, and 29 March. Discrete, short-lived ash emissions were detected during the afternoon and evening of 27 March in images from the FAA webcam in Perryville. The intermittent events lasted several minutes and produced small ash clouds that rose less than 300 m (1,000 ft) above the vent and drifted SE, which may have resulted in trace ashfall in Perryville, though there was no confirmed evidence. As of the 25th of March, AVO reported that low level activity continued. Elevated surface temperatures are observed at the top cone and the sidewall vent. Satellite observations reveal fresh ash deposits extending over about 10 km. south-east on the snow of the caldera.Seismicity shows periods of repeated seismic events and tremor.Back to the noises formed during the activity of March 23: the audible noises in the vicinity of the volcano are caused by the bursting of large pockets of gas with the active cone, in the case of typical Strombolian activity, characterizing basaltic volcanoes basalto-andesitic. AVO reported that the eruption at Veniaminof continued during 17-23 March. Low surface temperatures were visible in satellite images along with steam-and-gas plumes. Low-level tremor was recorded in local seismic data. During the morning of 21 March small explosions were identified using seismic data and infrasound sensors in Chignik Lagoon. A volcanic gas cloud drifted SE at or below 1.5 km (5,000 ft) a.s.l. Small explosions were detected again during 21-23 March. Sulfur dioxide plumes were identified in satellite data. Minor ash emissions rose hundreds of meters and rapidly dissipated, though on 23 March a pilot saw an ash plume rise to 3 km (10,000 ft) a.s.l. Satellite data during 22-23 March showed highly elevated surface temperatures and subsidence of the glacial ice over the flank vent where lava was erupting. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange.AVO reported that low-level eruptive activity continues. Small explosions at Veniaminof were observed in local seismic data and infrasound data at Chignik lagoon on the morning of March 21. A cloud of volcanic gas has been detected in satellite data extending southeast at an altitude of 5,000 feet or less. Minor low-level ash emissions from the small cone in the summit caldera and lava eruption in the intracaldera glacier at a vent ~ 1 km (0.6 mile) east of the top of the cone continues. AVO reported that the eruption at Veniaminof continued during 9-16 March. Ash emissions rose to 2.1-3 km (7,000-10,000 ft) a.s.l. and drifted 200 km NE and SE during 9-10 March. Explosions and ash emissions declined to lower levels the rest of the week, though new ash deposits within the caldera, and as far as 10 km SE, were sometimes identified in satellite images. Lava continued to effuse under the intra-caldera glacier in an area on the flank about 1 km E of the cone's summit. Elevated surface temperatures over this area were identified in a satellite images during most days, along with steam plumes and a broadening collapse pit in the ice from melting around the eruption site. Data from local seismic stations were back online by 12 March and showed elevated seismicity and tremor through 15 March. Steam-and-has plumes were identified in satellite images during 15-16 March. The Volcano Alert Level remained at Watch and the Aviation Color Code remained at Orange. As of the 12th of march, AVO reported that low level eruptive activity continues. Mainly cloudy satellite images showed minor low-level ash and gas emissions from the small cone in the summit caldera. Strongly elevated surface temperatures and a vapor plume were also observed from the lava eruption in the intracaldera glacier at a vent ~ 1 km (0.6 miles) east of the top of the cone. Low-level volcanic ash plumes were observed at about 7,000 to 10,000 ft asl extending up to 200 km (124 miles) downwind, leaving traces of ash deposits within 20 km (12 , 4 miles) from the vent to the northeast and southeast. Explosions corresponding to this activity have been detected on regional geophysical networks over the past week. Explosive activity has decreased over the past two days, with only minor ash emissions observed near the vent and no activity was detected in regional geophysical data.Current level of volcanic alert: WATCH - current aviation color code: ORANGE. As of the 7th of March, AVO reported that low level eruptive activity continues at Veniaminof. Numerous small explosions were seen on regional infrasound networks over the past day, some of which were heard and felt by residents of Perryville. High surface temperatures have been observed in satellite data, suggesting that lava may be near or on the surface of the summit cone. A low-level plume of ash and volcanic gas continues to be emitted and has been observed by pilots, as well as on web cameras and satellite imagery during periods of clear weather. The ash and gas plume was mostly below 3,000 meters asl, but was estimated at 4,500 meters asl in satellite data from last night. The plume continues to dissipate rapidly and the ash is mostly confined to the top caldera near the vent. AVO reported that regional infrasound sensors detected a small explosion from the Veniaminof volcano on March 4, 2021 at 2:13 p.m. UTC (5:13 a.m. local time). Satellite and webcam views indicate low-level ash emissions (<10,000 feet / <3,000 meters asl.) heading in the SSE direction, and minor ash deposits are visible over the volcano. As a result, AVO increases the Aviation Color Code to ORANGE and the Volcano Alert Level to WATCH on Veniaminof Volcano. Local seismic data remains offline due to a failure of a satellite link at Port Heiden. However, the Alaska Volcano Observatory continues to monitor Veniaminof with satellite and webcam data and remote infrasound, seismic and lightning networks. AVO reported that seismic data for Veniaminof had not been received since 8 December 2020 due to a problem with the satellite link at Port Heiden. Both the Aviation Color Code and the Volcano Alert Level were changed to Unassigned on 15 January 2021, reflecting the lack of available seismic data to detect unrest. Massive Veniaminof volcano, one of the highest and largest volcanoes on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface. (GVN/GVP)

U.S.A. - Semisopochnoi volcano ( Alaska)

September 8th, 2021

VO reported that eruptive activity at Semisopochnoi's North Cerberus crater continued during 31 August-7 September. Multiple daily explosions were detected by seismic and infrasound networks. Ash-and-steam plumes from the explosions were sometimes confirmed in satellite and webcam images rising to altitudes lower than 3 km (10,000 ft) a.s.l., though during 6-7
September ash plumes rose as high as 4.6 km (15,000 ft) a.s.l. Local ashfall on the island was visible in satellite data. Sulfur dioxide emissions were detected in satellite images during 31 August-2 September and on 6 September. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.As of the 1st of September, AVO reported that eruptive activity continues in the northern crater of Mount Cerberus on Semisopochnoi Island. Several small explosions have occurred over the past 24 hours, detected by seismic and infrasound networks. High SO2 emissions continue to be observed in satellite data. Small eruptions producing minor ash deposits near the active northern crater of Mount Cerberus and ash clouds generally less than 10,000 feet above sea level have characterized recent activity, which shows no sign of slowing down. Small explosions can continue to occur and could be difficult to detect, especially in bad weather.
AVO reported that multiple explosions and seismicity at Semisopochnoi's North Cerberus crater continued during 18-24 August. Low-level gas-and-ash emissions, including occasional sulfur dioxide emissions were detected in satellite and webcam data during 18-24 August and rose no higher than 3 km (10,000 ft) a.s.l.AVO reported that an eruption at Semisopochno's North Cerberus crater was ongoing during 11-17 August, characterized by daily explosions, ash plumes, and occasional sulfur dioxide emissions identified in satellite images. Multiple energetic explosions were detected daily in seismic and infrasound data, and strong seismic tremor was occasionally recorded. Daily steam-and-ash plumes identified in webcam and satellite data rose no higher than 3 km (10,000 ft) a.s.l. and drifted 200-300 km W. Daily ashfall likely occurred on the island. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.As of the 14th of August, AVO reported that during the last day, four small explosions were detected from the North Cerberus crater in Semisopochnoi on infrasound and seismic sensors. Clear images from the web camera showed nearly continuous ash emissions, including during periods with no explosion detected. Overnight, satellites detected a low-level ash plume below 10,000 feet above sea level extending to Kiska about 100 to 200 miles west (200 to 300 km).AVO reportede that more than 20 small explosions were detected in the North Cerberus crater in Semisopochnoi during the day of August 12. None of these were noted on satellite imagery, and a stable, low-level steam plume, possibly containing ash, was seen on clear web camera images this morning. Ash emissions from these explosions are likely similar to those of the past few days, but not always detected due to the low altitudes and cloud cover.As of the 10th of August, AVO reported that ten separate explosions have been detected from the North Cerberus crater at Semisopochnoi over the past day, and a small, low-level plume has occasionally been noted on satellite imagery drifting east. Small ash and vapor emissions were detected in clear images from web cameras.Small eruptions producing minor ash deposits near the active northern crater of Mount Cerberus and ash clouds less than 10,000 feet above sea level have characterized recent activity and show no signs of abating . Small explosions can continue and could be difficult to detect, especially in bad weather. AVO reported that increased seismicity and elevated activity in infrasound data were recorded during 31 July-1 August, and multiple, discrete, energetic explosions were detected during 1-3 August. Weather clouds again obscured satellite views; steaming was visible in webcam views. Beginning at 1015 on 2 August the local networks recorded an explosion and an intense burst of seismic and acoustic tremor that lasted for about 15 minutes. A small ash cloud was visible in satellite images drifting 60 km N at altitudes of 1.5-3 km (5,000-10,000 ft) a.s.l. Ash emissions from the active vent in North Crater were visible in webcam views on the morning of 3 August. As of the 31st of July, AVO reported that the seismic activity of  has increased in recent days, particularly marked during the last 8 hours. Increased activity was also detected on local infrasound stations, suggesting possible low level emissions (below 10,000 feet above sea level). Due to this increase in activity, AVO is increasing the Aviation Color Code to ORANGE and the Alert Level to WATCH on July 31 at 10:19 AKDT. AVO reported that seismicity continued to be elevated during 23-27 July. Robust steam emissions were visible in webcam views during 22-24 July and sulfur dioxide plumes were identified in satellite images on 23 July. Weather clouds obscured views during 24-27 July. The volcano was downgraded from the Aviation Orange color code to YELLOW on 07/21/2021 at 4:28 p.m. Seismicity is greater than background noise, but no evidence of explosive activity was detected in the seismic or infrasound data. No activity was observed in the cloudy satellite views, but strong vapor emission from the active vent was observed on the web camera images from the night of July 22. AVO reported that unrest continued at Semisopochnoi during 13-20 July. Periods of low-level tremor and steam plumes from Mount Cerberus were occasionally recorded. Elevated surface temperatures at the N cone of Mount Cerberus were identified in satellite images during 13-14 July and robust steam-and-gas emissions were seen in webcam images. A plume with low amounts of sulfur dioxide drifting about 200 km N was identified in satellite data on 17 July. Sulfur dioxide emissions were also detected the next day. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.Satellite observations on the afternoon of July 13 showed emissions from a cloud of volcanic gas (SO2), possibly containing volcanic ash. The emissions occurred for tens of minutes beginning at around 2100 UTC (1300 AKDT) and produced a low-level cloud that moved south to an altitude of less than 1,500 meters asl. The volcanic tremor continued for several hours yesterday afternoon before dropping to low levels. No additional gas / ash emissions were observed in satellite data or detected on the local infrasound network. Aviation color code and alert level changed to Orange / Watch due to seismic tremor and low level ash emissions on 12th of July, 2021. A continuous volcanic tremor began to be observed at ~ 8:00 p.m. UTC (12:00 a.m. AKDT) and is continuing. Ash emissions were visible in satellite data starting around 9:00 p.m. UTC (1:00 p.m. AKDT) down to an altitude below 5,000 feet asl (depending on wind direction). Satellite observations yesterday afternoon showed a robust steam plume and sulfur dioxide emissions. As of the 16th of June, AVO reported that no ash emission or explosion has been detected at Semisopochnoi  in satellite or infrasound data since May 30, and the level of seismic activity has been relatively low. Satellite views over the past few weeks have detected high surface temperatures and emissions of sulfur dioxide have been observed repeatedly, indicating continued volcanic unrest, but no recent ash deposition has been observed. Due to the low level of seismicity and the lack of significant explosive activity, AVO lowers the Aviation Color Code and Volcanic Alert Level to Yellow / Advisory. AVO reported that low-level unrest at Semisopochnoi continued during 2-8 June with seismicity occasionally above background levels. Steaming from Mount Cerberus was sometimes observed by field crews. Slightly elevated surface temperatures were identified in a few satellite infrared images during 4-7 June. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that strongly elevated surface temperatures were also identified in satellite data. Increased seismic tremor and accompanying low-level ash emissions began at 0945 on 30 May, with ash plumes drifting S at an altitude of 1.5 km (5,000 ft) a.s.l. at least through 1250. Elevated surface temperatures were detected during 30-31 May, likely from hot material on the crater floor. Seismic data showed low-level continuous tremor and occasional small discrete events. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch. AVO reported that low-level ash emissions resumed on May 30 at around 5:45 p.m. UTC (9:45 a.m. AKDT) at Semisopochnoi and were accompanied by an increase in the seismic tremor (continuous tremors). They were visible in geostationary satellite data and continue until 20:50 UTC (12:50 AKDT). The seismic tremor remains high at the present time and its intensity varies. The ash cloud is moving south over Amchitka Island at an elevation of about 5,000 feet asl. High spatial resolution data from the 29th afternoon show sharply elevated surface temperatures in the active (northernmost) vent of Mount Cerberus. Infrasound data shows no evidence of strong explosive events. The seismicity during the last day was characterized by periods of high tremors which increased and decreased over periods of several hours, interspersed with periods of much lower amplitude. The alert level remains at Watch and the aviation code at Orange.AVO reported that sulfur dioxide and steam plumes from Semisopochnoi were possibly visible in satellite images during 19-20 May. Satellite images on 21 May showed a sulfur dioxide gas plume drifting 160 km SE. Steam plumes rose from Cerberus on 24 May. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.AVO reported that weakly elevated surface temperatures and sulfur dioxide gas emissions at Semisopochnoi were identified in satellite images during 16-17 May. Several small explosions were recorded in infrasound data during 17-18 May; a small ash cloud was observed in a satellite image from 1521. Sulfur dioxide gas emissions and steaming from the active vents were identified in satellite data. The Aviation Color Code was raised to Orange and the Volcano Alert Level was raised to Watch on 18 May.Eruptive activity at Semisopochnoi gradually increased during 21-22 April based on satellite and infrasound data; ash emissions were first seen in satellite images at 1800 on 21 April and were continuous at least through 1348 on 22 April. Plumes rose to 2.4 km (8,000 ft) a.s.l. and drifted 80 km S. Sulfur dioxide emissions were also detected in satellite images on 22 April. Cloud cover mostly obscured views during 23-24 April, though possible minor ash emissions were sometimes visible. Low-level ash plumes drifting S were occasionally identified in satellite images during 24-26 April. Dense weather clouds prevented views for most of 26 April and the next day. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.As of the 23rd of April, AVO reported that the eruptive activity at Semisopochnoi has gradually increased over the past 24 hours. Satellite views of the volcano show a continuous plume extending 80 km to the south at about 2,450 meters a.m.s.l. A regional infrasound network has detected this increase in activity. Aviation color code and alert level remain at ORANGE / WATCHAVO reported that an eruption at Semisopochnoi continued during 14-20 April. Sulfur dioxide emissions were identified in satellite images during 13-14 April. An explosion was recorded by the regional infrasound network at 0417 on 14 April, though weather cloud cover as high as 4 km (13,000 ft) a.s.l. prevented satellite confirmation of an ash plume. Ash emissions. The plumes generally drifted south at elevations of about 10,000 feet a.m.s.l. for distances up to 100 km in length. SO2 emissions were also observed on Thursday, April 22, 2021 began during the morning of 15 April and continued through the day, drifting more than 350 km SE at altitudes as high as 6 km (20,000 ft) a.s.l. They did not decrease in intensity, so at 1915 AVO raised the Aviation Color Code to Red and the Volcano Alert Level to Warning. Sustained ash emissions continued on 16 April, though the plume rose as high as 3 km (10,000 ft) a.s.l. and winds pushed it N. Explosions were detected through the night and early in the morning. Minor ash deposits around the volcano were visible. Eruptive activity declined during 16-17 April; one clear satellite view suggested that activity had declined or ceased. At 1249 on 17 April AVO lowered the Aviation Color Code to Orange and the Volcano Alert Level to Watch. Several explosions were recorded during 17-19 April though weather clouds obscured views. Volcanic plumes were visible just above the weather cloud deck (situated at 3 km (10,000 ft) a.s.l.) and drifted S during 19-20 April. A few darker (possibly ash rich) plumes were visible in satellite data at 0700 and 1150 on 19 April and on 20 April.Satellite data suggests that ash emissions from the Semisopochnoi volcano have continued since early April 16 in the morning, without decrease in intensity.The ash cloud extends over 350 km southeast of the volcano with heights of up to 6 km above sea level. Based on the length and height of the ash plume and the sustained nature of the ash emissions, the AVO increases the color code to RED and the alert level to WARNING. Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island's northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time. (GVN/GVP)

USA- Atka volcano (Alaska)

August 28th, 2021

AVO lowered the Aviation Color Code and Volcano Alert Level for the Atka Volcanic Complex to Green and Normal, respectively, on 27 August, noting that seismicity had returned to baseline levels over the previous week.AVO reported that small earthquakes and seismic tremors at Atka continued to be detected, though at near background levels during 18-24 August.The number of small shallow earthquakes increased at Atka during 10-11 August, prompting AVO to raise the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory. The earthquakes were located at a depth of 3-6 km and around 7 km SW of Korovin, though may be related to the several vents that are part of the Atka volcanic complex. Seismicity declined afterwards but remained above background levels through 16 August, and was near baseline levels by 17 August. The largest volcanic center in the central Aleutians, Atka consists of a central shield and Pleistocene caldera with several post-caldera volcanoes. A major dacitic explosive eruption accompanied formation of the caldera about 500,000 to 300,000 years ago. The most prominent of the post-caldera stratovolcanoes are Kliuchef and Sarichef, both of which may have been active in historical time. Sarichef has a symmetrical profile, but the less eroded Kliuchef is the source of most if not all historical eruptions. Kliuchef may have been active on occasion simultaneously with Korovin volcano to the north. Hot springs and fumaroles
are located on the flanks of Mount Kliuchef and in a glacial valley SW of Kliuchef. (GVN/GVP)


*********************************************************************************************************************************************************************************************************

Pu'u'u cone ( Kilauea volcano)

Color photograph of lava lake

Kīlauea’s summit lava lake, in Halema‘uma‘u, just after sunset on January 8, 2021. This view is to the north, from the south rim of the crater.(HVO)

ITALY - Etna volcano ( Sicily)

September 1st, 2021

INGV reported that after the paroxysm of August 29, whose satellites show the extent of the field of lava flows and the extension of the sulfur dioxide plume following the eruption, a weak Strombolian activity resumed at the south-eastern crater of Etna on August 30 at around 8 p.m. UTC, The trend of the mean amplitude of the volcanic tremor, from 20:00 UTC, is characterized by fluctuations on medium-low values. This activity ceased on August 31 at the end of the day. The center of gravity of the volcanic tremor sources is located in the crater of Bocca Nuova at an altitude of about 2,700 m above sea level. Infrasonic activity is kept at low levels. INGV reported that at 3:25 p.m. local time on August 29, 2021, Strombolian activity resumed at the south-eastern crater of Etna.From 12:00 UTC there was a significant increase in the amplitude of the tremor, which reached high values ​​(red area). This phenomenon was also followed by an increase in infrasonic activity, with approximately 1 event per minute. The sources of the tremor were located to the SE of the SE crater, at a level of about 3000 m. altitude Over the past few hours, there has been no significant change in the distortion to the GPS and tilt networks.At 3:45 p.m. GMT, there is an increase in Strombolian activity with passage to a lava fountain. There was a further increase in the amplitude of the tremor, which reaches high values. Infrasonic activity also increased, both in terms of frequency and amplitude of signals. The sources of the tremor are located SE of the SE crater, at a level of approx. 3.000 m. altitude .INGV announced at 18:27 UTC that the explosive activity continued at the South-East summit craters. This activity produced two lava flows, one towards the Valle del Bove and the other towards the southwest, the latter encircling the Monte Frumento Supino. The flow fronts was still active. The fallout of ash and lapilli affected the municipalities of: Milo, Sant'Alfio, Giarre, Fornazzo. The thermal anomalies, noted by Mirova, were very important: VRP 2551 MW on 08/29/9:40 p.m. and VRP 1114 MW on 08/30/00:20 a.m. The explosive activity at the SEC ceased at 20:37 UTC. The lava flows are cooling. The amplitude of the tremor was currently at medium-high levels. The signal sources are located SE of the SE crater. The infrasonic activity has practically ceased. The soil deformations recorded on the clinometric network were exhausted, which revealed, during the lava fountain, variations of up to about 2 microradians at the Cratere del Piano (ECP) station. INGV reported that the week of August 9 to 15 was characterized at Etna by Strombolian activity and an episode of lava fountain from the Southeast Crater (SEC), occasional ash emissions at the Northeast Crater (NEC), degassing ordinary at the crater of Bocca Nuova (BN) and a fumarolic degassing at the crater of Voragine (VOR). Over the past week, there has been no significant change after the previously reported August 9 lava fountain event, and the lava flows in the Valle del Bove. Seismic fracturing activity remained low. The amplitude of the volcanic tremor stagnates on the medium-low level. Large and sudden fluctuations up to high values ​​can be correlated with explosive activity at the Southeast Crater. The infrasound activity is moderate. On August 10 at 07:20 UTC, INGV reported that an explosive event took place in the northeast crater of Etna, generating an ash cloud that reached a height of about 6,000 m. altitude, and which then spread to the southeast.This explosion was followed by further low emissions of ash and steam; currently the phenomenon is decreasing. From 07:19 UTC, a seismic sequence lasting about 1 minute was recorded, consisting of about 5 low frequency events of moderate energy, attributable to the explosive activity of the northeast crater. low values ​​and a subsequent return to low values. Regarding infrasonic activity, no significant variation is recorded, except for a low energy infrasonic signal associated with the reported explosive activity.The INGV reports at 9:39 UTC that the emission of volcanic ash from the northeast crater continues, with a fluctuating intensity, feeding an eruptive cloud directed towards the southeast. The cloud reaches a height of between 5,000 and 6,000 m above sea level. The mean amplitude of the volcanic tremor shows no significant change. The source centroid is located in the area of ​​the Voragine and Northeast craters at a depth of approximately 2800 m above sea level. No significant changes in infrasound activity. As of the 10th of August, INGV reported that from the analysis of Etna's video surveillance network, a weak emission of lava continues from the east and south-east base of the SE crater. The lava flows remain confined to an altitude of about 2900 m. The last ash emission from the SE crater occurred around 13:30 UTC. During the morning of August 9, the average amplitude of the volcanic tremor showed significant and sudden fluctuations between medium-low and medium-high values, linked to the appearance of low-frequency transient phenomena associated with the activity. explosive at the level of the SE crater and whose trace infrasound is also clearly visible. At 20h UTC, the amplitude shows average values ​​and the centroid of the sources is located in the area of ​​the Voragine crater at an altitude of about 2.700 m above sea level. Regarding infrasound activity, except for the aforementioned phases of rapid increase in the rate of occurrence in the amplitude of events at the SE crater, it remained at a medium-low level with sources in the area. from the Bocca Nuova crater. The infrasonic activity is currently low. Since the last update, no significant changes have been observed in the time series of soil deformation monitoring stations. Local observers reported that after an increase in the Etna tremor in average values ​​on August 7 in the evening, new gradually increasing occurred on the evening of August 8 at the level of the southeast crater with beautiful bubbles exploding with "boati", lava fountaining, an impressive plume, and a lava flow. The climax ended around 6 a.m. on August 9.More unusual, a new mouth opened at the eastern base of the southeast crater, at 07:41 local time, with emission of volcanic sand towards the Valle del Bove. INGV reported that from 11:50 UTC on August 4 a discontinuous emission of ash from the northeast crater of Etna was observed. The volcanic cloud produced reaches a height of about 6000 m above sea level and, according to the forecast model, disperses in the NE direction. The temporal trend of the mean amplitude of the volcanic tremor does not show significant variations and the values ​​remain low. The center of gravity of the volcanic tremor sources is located in correspondence with the south-eastern crater at an altitude of about 2,900 m above sea level. The infrasonic activity remains at low levels with events localized in correspondence with the Bocca Nuova. High Frequency GNSS Network Data does not show significant changes. At 19:35 UTC, ash emissions from the northeast crater ceased. INGV reported that on July 31, 2021 from around 5.15 p.m. UTC, Strombolian activity was observed at the level of the south-eastern crater of Etna, following a rapid increase in the tremor from 5 p.m. UTC. The activity was currently confined to the crater and generates discontinuous and light ash emissions which were dispersed in the summit area. From 17:50 UTC, the increase in explosive activity at the level of the southeast crater was signaled by the INGV, and produces an ash cloud which reached 5 km above sea level and dispersed in the SE direction. Around 19:15 UTC a lava flow was observed which is propagating in a southwest direction. The observatory signaled at 11:22 p.m. (9:22 p.m. UTC) the gradual passage of Strombolian activity towards the shape of a lava fountain at the level of the southeast crater. Based on the forecast model, the eruptive cloud produced by the current activity disperses in the eastern sector and marginally in that to the south of the volcano; the lava flow produced by the ongoing activity at the Southeast Crater continues to feed and propagate in the SW direction, when the lava front has reached an altitude of about 2,800 m above the sea ​​level. The amplitude of the volcanic tremor is on high values ​​with an increasing trend. The last location of the tremor, at 20:45 UTC, is near the southeast crater at a depth of about 3,000 m above sea level. The lava fountain in the southeast crater ceased at around 11:30 p.m. UTC; a weak strombolian activity continues with a modest emission of ash. The lava flow which extends in the SW direction continues to be fed, another lava flow is also observed which extends along the northern flank of the Southeast crater.Previously, INGV reported that on July 28 from 07:25 UTC a resumption of Strombolian activity at the level of the south-eastern crater of Etna; it remains confined in the crater and generates discontinuous and light ash emissions in the summit area. Around 07:40 UTC the average amplitude of the volcanic tremor of Etna showed a sudden increase reaching high values. The source of the quake is located in the craters of Bocca Nuova and the southeastern crater at an altitude of about 2800 m above sea level. The infrasonic activity is increasing and is located in the south-eastern crater. INGV reported that on 26th of July from 18:20 UTC, a continuous emission of ash was observed at the level of the northeast crater of Etna. In the absence of wind, the ash plume reached a height of about 6,000 m above sea level. The minor event produced no incandescence, infrasound, or significant tremor signal and ended after two hours. INGV reported that from around 22:00 UTC on July 19, 2021, the resumption of Strombolian activity at the level of the south-eastern crater of Etna was observed. According to the forecast model, the volcanic ash produced by the current activity was dispersed in the direction of S. The temporal trend of the mean amplitude of the seismic signal which from the afternoon of day 18 was characterized by large fluctuations, currently showed a fairly stationary trend on medium-high values. The location of the centroid of the volcanic tremor sources was currently located in correspondence with the southeast crater at an altitude of about 2700 m above sea level. From around 02:20 UTC on July 20, a sudden increase in the amplitude of the volcanic tremor was observed which reached high values. The centroid of the tremor sources wa located in correspondence with the southeast crater at an altitude of about 2900 m above sea level. The INGV reports at 05:47 UTC the gradual transition of Strombolian activity towards a lava fountain at the crater of South East. Based on the forecast model, the eruptive cloud produced by the current activity dispersed towards the SSE. In addition, an overflow of lava was observed from surveillance cameras to the southwest. INGV reported that from approximately 07:50 UTC on July 14, an increase in the average amplitude of the volcanic tremor of Etna was observed. From around 09:05 UTC, a resumption of the strombolian activity was observed at the level of the south-eastern crater of Etna. According to the forecast model, the volcanic ash produced by the current activity is dispersed in the NE direction. The activity leading to an overflow of lava directed towards the SW around 10:40 am approximately.At around 11:00 UTC, the INGV signaled the gradual passage of Strombolian activity towards the lava fountain stage. At 12:30 UTC, the observatory reported that the analysis of the images of the CCTV cameras and the satellite showed that the eruptive cloud, from approximately 11:40 UTC, reached a height of more than 9000 m. asl. INGV personnel on the ground were also reporting the fallout from large bombs on the southern flank of the Bocca Nuova crater. The fountaining ceased at SEC around 12:30 UTC. From the analysis of satellite images, it was observed that the volcanic cloud moved towards the NE and reached the Calabrian coast from 12:20 UTC. INGV staff present in the field reported abundant fallout of lapilli ash and ash (thickness greater than 1 cm) in the Rocca Campana district. There were reports of volcanic ash and lapilli fallout at Rifugio Citelli and Presa and volcanic ash at Taormina. INGV reported that from around 19:00 UTC on July 8, the resumption of Strombolian activity was observed at the level of the south-eastern crater of Etna andsharply increasing from 19:55 UTC. Based on the forecast model, the ash produced by the current activity is dispersed in the direction of S. Around 8:45 p.m. UTC, a gradual passage of Strombolian activity at the lava fountain stage occurred at the Southeast crater. In addition, there was an overflow of lava in the SW direction. According to the forecast model, the eruptive cloud produced by the current activity disperses in the S direction, reaching a height of about 4000 m above sea level. The INGV reported at 22:47 that the lava fountain of the Southeast crater was complete, while a weak emission of ash continues. The explosive activity produced an eruptive cloud which reached about 11,000 m altitude, based on satellite images, moving first in the S direction then in the SE direction, and a small lava flow from the southern flank of the south-eastern crater cone. The flow, which has moved towards the SW, is currently still fed and is located at an altitude of about 2800 m above sea level. News has been received of fallout of volcanic material on the villages of Zafferana Etnea (E side), Fleri (SE side), Pedara and Cannizzaro (S side). INGV reported that on July 6, 2021 around 9:30 p.m. UTC, resumption of Strombolian activity occurred at the level of the south-eastern crater of Etna. According to the forecast model, the ash produced by the current activity is dispersed in the SE direction. This activity intensifies from 10 p.m. UTC. From 22:30 UTC, the gradual transition from Strombolian activity to the form of a lava fountain is observed at the SE crater. According to the forecast model, the eruptive cloud produced by the current activity disperses in the S direction, reaching a height of about 5000 m above sea level. The lava fountain of the southeast crater ceased its activity a little after midnight, while a weak Strombolian activity with ash emission continues on July 7. The eruptive activity produced a small lava flow from the southern flank of the cone of the southeast crater. The flow, which was heading towards the SW, is currently fed and is located at an altitude of about 2800 m above sea level. As of the 4th of July, INGV reported that from around 11:00 UTC, the average amplitude of the Etna volcanic tremor showed a gradual increase and at around 14:40 UTC it reached the high range. The resumption of Strombolian activity at the level of the southeast crater was observed at 14:56 UTC. From 15:25 UTC, the passage of Strombolian activity to the lava fountain stage is observed. Based on the forecast model, the eruptive cloud produced by the current activity disperses in the ESE direction.After reaching the maximum value around 15:50 UTC, the average amplitude of the volcanic tremor showed a gradual decrease, which became much more evident from 16:40 UTC. The lava fountain in the Southeast Crater ceased its activity at 5 p.m. UTC; a weak strombolian activity remains with ash emission. In addition, only the lava flow of the SW sector remains supplied. INGV reported that on 1st of July.2021 from 22:40 UTC, the resumption of Strombolian activity is observed at the level of the south-eastern crater of Etna. At 22.40 UTC the amplitude of the volcanic tremor is high. The last tremor location, at 9.45pm UTC, is near the southeast crater at a depth of approximately 3.0 km asl. From 22.50 UTC, Strombolian activity changes to the lava fountain stage. According to the forecast model, the eruptive cloud produced by the current activity disperses in the WNW direction. In a report at 11:37 p.m., the INGV reports that the SEC lava fountain activity continues. In addition, there is an overflow of lava in the SW direction. Based on the forecast model, the eruptive cloud produced by the current activity disperses in the ESE direction. On 2nd of July, from 00.50 UTC, the lava fountain in the southeast crater ceased, while weak Strombolian activity persists. As for the lava overflow, there is still fed in the direction of SW. INGV reported that on 28 June at about 16:00 (14:01 UTC), strombolian activity at the South-East Crater of Etna resumed, passing to the lava fountain phase at about 17:00 (15:01 UTC). This explosive activity was accompanied by two lava flows, one towards the SW and the other in the southwest of the South-East Crater. In accordance with the predictive model, the eruptive column dispersed to the south-southeast, reaching a height of about 10 km s.l.m. At about 17.30 hrs the lava fountain stopped. INGV reported that at 07:12 UTC on 27 June , a strombolian activity has resumed at the South-East Crater of Etna, producing an ash cloud that is moving eastwards.Strombolian activity in the southeast crater is gradually increasing, producing modest ash emissions. In addition, a southwestward overflow of lava was underway. At 08:10 UTC, the amplitude of the volcanic tremor was at high values with an increasing trend. From about 09:00 UTC, the surveillance cameras observed the transition from strombolian activity in the southeast crater to a lava fountain. The activity occurred from three vents in the western part of the southeast crater.By 09:50, lava spouting activity in the south-east crater has ceased, but ash emission continued; the eruptive column reached a height of 9-10 km, heading east-southeast. Volcanic ash fallout was reported on the eastern flank of the volcano. The INGV reported at 12.27 pm that explosive activity in the south-east crater has ceased. The lava flow emitted from the "saddle mouth" of the southeast crater was no longer fed, but is still extending southwestwards, with an active front at an altitude of about 2700 m. INGV reported that shortly after 14:30 h UTC on 26 June 2021 a resumption of strombolian activity from two eruptive vents on the South-East Crater of Etna has been observed, which is progressively intensifying, accompanied by the production of small quantities of volcanic ash. In the previous hours, the lava flow emitted by a mouth at about 3050 m on the south-eastern flank of the South-East Crater, which remained active after the previous night's eruptive episode, has been progressively exhausted and is currently cooling. At 14.20 hours UTC, the magnitude of the volcanic tremor is on average increasing. The last location of the tremor, at 13.45 hours UTC, is near the South-East Crater at a depth of about 3.0 km asl. At about 15:40, the strombolian activity in the South-East Crater has progressively changed to the lava fountain stage. The emission of pyroclastic material is intensifying, feeding a high eruptive cloud reaching a height of about 5 km above sea level. At the same time, a southwestward overflow of lava began, superimposed on the previous evening's eruptive episode. Lava fountain activity ceased at around 16:50. A small ash emission from the south-east crater still persists. South-East crater, and the flow continues to extend south-west and south-east. south-south-west. A resumption of effusive activity is also observed at the mouth located at an altitude of 3050 m on the south-eastern flank of the south-eastern crater, which feeds a small lava flow of about 100 m in length. There is a fallout of lapilli with diameters of 1-2 cm in the area of Macchia di Giarre and Zafferana Etnea, and several millimetres at Torre Archirafi (east side of Etna). At about 20:59, strombolian activity ceased, but effusive activity continued from the mouth on the south-eastern flank of the south-eastern crater, feeding a lava flow which, at an altitude of 2900 m, split into two branches. The longer and more northerly of these branches had reached an altitude of about 2600 m at 20:00 UTC and had begun to cool; the other branch had an active front at about 2700 m. INGV reported that from 17:39 UTC on June 25, the resumption of Strombolian activity at the south-eastern crater of Etna is observed from surveillance cameras, increasing around 18:05 UTC, and emerging, according to a pattern now known, around 18:25 UTCon an overflow of lava, which from the southern slope of the southeast crater, spreads in a southwest direction. From around 6:40 p.m. UTC, the transition of Strombolian activity from the Southeast Crater to a lava fountain can be observed from surveillance cameras. The height of the eruptive column reached about 7.6 km above sea level, dispersing to the east. As of 7:15 p.m. UTC, the lava fountain in the southeast crater has gradually depleted. The lava fountain produced an overflow of lava along the southern slope of the southeast crater, which spread in a southwest direction. On the east side, a third small lava flow is still observed, generated from the effusive vent at an altitude of 3050 m., During the last episode of the fountain.INGV reported that a new eruptive episode occurrerd on June 24, 2021, which produced lava fountains of three mouths ( " saddle " zone), an overflow of lava towards the southeast, and an eruptive column which reached a height of about 10 kilometers above sea level. After the paroxysm, the effusive mouth was reactivated on the lower south-eastern slope of the South-East Crater, which emits a small flow of wash.INGV reported 14:38 UTC on 23rd of June that from the analysis of the images of the surveillance cameras and the surveys carried out in the area summit by the staff of the INGV Etneo Observatory, it is observed that the two effusive mouths opened on the south-eastern flank of the south-eastern crater at an altitude estimated at around 3000 m and 2950 m above sea level. Currently, the lava flow of the quote 3000 m mouth was no longer supplied, while that of the Quote 2950 m mouth was still active, although poorly supplied. The front of the latter reached and passed the western edge of the Valle del Bove to reach an altitude estimated at about 2700 m above sea level. The amplitude of the volcanic tremor is maintained at the average level with a gradual tendency to decrease.From approximately 17:45 UTC, a further increase in Strombolian activity at the level of the Southeast crater was observed from the surveillance cameras with the emission of ash which, according to the forecast model, disperse in the direction ESE.Around 18:00 UTC, then the Strombolian activity of the Southeast crater has gradually passed to a lava fountain Based on the forecast model, the eruptive cloud, which reaches a height of about 9 km above sea level, disperses in an east-northeast direction. In addition, from 18:28 UTC, we observe the opening of an eruptive vent on the upper eastern slope of the Southeast Crater which produces explosive activity and a lava flow which propagates in an easterly direction. From 18:38, we also observe an overflow of lava that propagates in a southwest direction.As of 19:00 UTC, the lava fountain in the southeast crater gradually depleted. After the activity of the lava fountains at the Southeast Crater stopped, a weak Strombolian activity with ash emission continued for a few tens of minutes, which gradually disappeared. During the night and at dawn a weak effusive activity continued at the open mouths at the south-eastern base of the south-eastern crater, which fed a lava flow on the western wall of the Valle del Bove with a front at about 2600 m. At dawn today a small stream was bustling near the effusive mouth, a few tens of meters long. INGV reported that on June 23 from 00:30 UTC, it was possible to observe, from surveillance cameras, the resumption of Strombolian activity at the Southeast crater from at least three eruptive vents. As of 02:13 UTC, there was also an overflow of lava from the southeast crater that extends in a southwest direction. Around 02:44 UTC, the Strombolian activity of the Southeast crater has transformed into a lava fountain. At 03:17 UTC, based on surveillance camera footage, the southeast crater lava fountain was observed to have ceased. The eruptive cloud produced exceeded the height of 9 km asl. and according to the forecast model, its dispersion concerned the eastern sector of the volcano with lapilli falling at Fornazzo and Giarre. Regarding the lava overflow, it seems poorly fed and the front seems to be at the same level as that indicated before, at about 2900 m altitude. In addition, at the end of the lava fountain phase, it was possible to observe that the activity of the Southeast Crater produced a second lava overflow from its eastern edge which headed east without exceeding the base of the crater. The current series of paroxysmal eruptive episodes at Etna continues with intervals of just over a day between eruptive crisis. On June 22, from 02:15 UTC, a resumption of Strombolian activity was observed at the level of the Southeast crater. From around 02:30 UTC, a sudden increasing in Strombolian activity was observed with the fall of the products on the external slopes of the CSE crater. In addition, the continuous emission of ash produced by the current activity, according to the forecast model, is dispersed in the NE direction. Strombolian activity in the southeast crater turned into a lava fountain around 02:55 UTC. In addition, there was an overflow of lava to the southwest. According to the images of the surveillance cameras, the INGV reported in its 04:13 UTC communication that the explosive activity at the Southeast crater has ceased, the lava overflow that extended in a southwest direction still seems weakly powered. As of the 20th INGV reported that From 21:00 UTC a modest Strombolian activity resumed at the southeast crater of Etna, and around 21:53 UTC, a sudden increase in Strombolian activity is observed with a fall of the products on the external slopes of the CSE crater. In addition, the continuous emission of ash produced by the current activity, according to the forecast model, is dispersed in the direction of SEE. From 10:15 p.m. UTC, the Strombolian activity of the southeast crater turned into a lava fountain 600-700 m high. The moonlit eruptive column, bent east-south-east, reached a height of 8-9 km. In addition, there is an overflow of lava to the southwest. The National Institute of Geophysics and Volcanology, Etneo Observatory, reports at 00:13 that from the images of the surveillance cameras, we observe that the explosive activity at the level of the Southeast Crater has ceased, the overflow of lava which s The extension in a southwest direction is still active.INGV reported that from 6.15 p.m. on 06.19.2021, a Strombolian activity began at the level of the south-eastern crater of Etna. This activity is accompanied by a modest emission of ash. From 6.30 p.m. a southwest-directed lava overflow began, and from around 6.40 p.m. UTC, a sudden increase in Strombolian activity was observed at the south-eastern crater, which produced a continuous emission of ashes. On the basis of the forecast model, the emission of ash and lapilli is dispersed in the direction of Tremestieri Etneo, Mascalucia, Nicolosi, Catania and the regions further south. From 19:00 UTC, the Strombolian activity in the southeast crater turned into a lava fountain. Based on the forecast model, the eruptive cloud produced by the current activity disperses in the S direction. The effusive activity produced by the lava overflow in the southwest direction continues to be well fed. According to the images of the surveillance cameras, around 19:30 UTC, explosive activity at the Southeast crater has ceased, the lava overflow that extends in a southwest direction is still active. The center of gravity of the volcanic tremor sources is located in the southeastern crater region at an altitude of about 2900-3000 m above sea level.INGV reported that from approximately 20:20 UTC on June 17, 2021, a sudden increase in Strombolian activity is observed at the level of the south-eastern crater of Etna, producing a continuous ash emission which disperses in the summit zone and an overflow which propagates towards the SW. The products of Strombolian activity protrude from the rim of the crater falling along the sides of the crater. From approximately 23:20 UTC, the Strombolian activity of the southeast crater passed to a lava fountain phase. This stopped at 00.10 UTC. June 18. From 8:50 am The INGV reports that from the images of the surveillance cameras, we observe that the explosive activity at the level of the South-East crater has ceased, the lava overflow extending in a south-west direction is cooling. INGV reported that Strombolian activity continues at the south-eastern crater of Etna. This activity is accompanied by ash emissions which vary in intensity and frequency. On June 17, 2021 from approximately 20:20 UTC, a sudden increase in Strombolian activity is observed at the level of the Southeast crater, which produces a continuous emission of ash which disperses in the summit area and an overflow that is propagates to the SW. The products of Strombolian activity go beyond the rim of the crater falling along the sides of the crater. From approximately 23:20 UTC, the Strombolian activity of the southeast crater passed to the lava fountain stage. Based on the forecast model, the eruptive cloud produced by the current activity disperses in the SE direction. The tendency to increase the mean amplitude of the volcanic tremor continues with very high values. The center of gravity of the volcanic tremor sources is located in the area of ​​the Southeast Crater, at an altitude of about 2900-3000 m above sea level.The fountaining ceased at 00:10 UTC. As for the lava overflow directed to the southwest, it continues to be fed.INGV reported that from approximately 11:32 UTC on June 16, a sudden increase in Strombolian activity was observed at the level of the southeast crater, which produces a continuous emission of ash scattered in the summit area. The products of Strombolian activity protrude from the rim of the crater falling along the sides of the crater. At 11:47:22 (UTC) the INGV reported that Strombolian activity has passed to the lava fountain stage. In addition, an overflow of lava was observed from the southern flank of the southeast crater which extended in a southwest direction. The southeast crater lava fountain ceased at 12:50 UTC. Regarding the lava flow the one directed towards the southwest continues to feed and there was also a second lava flow produced by a second overflow of the southeast crater which extends towards the Valle del Bove.And at 3:20 p.m. UTC, there was the resumption of Strombolian activity at the Southeast Crater. The effusive activity produced by the two overflows was terminated and the lava fronts were cooling. Since approximately 9:10 p.m. on June 14, a new increase in Strombolian activity at the Southeast Crater of Etna has been observed by INGV. According to the forecast model, the eruptive cloud produced by this activity disperses in the SE direction. In addition, an overflow of lava is observed from the south side of the southeastern Crater which spreads to the southwest. At the same time as the increase in Strombolian activity, we observe a further increase in the average magnitude of the volcanic quake at the high level, located in the Southeast Crater region at about 2900 m. above sea level. The INGV announces at 21:46 UTC that the Strombolian activity has passed to the lava fountain. The fountain ceased to be active at 10:44 UTC / 12:44 local time on June 15. INGV reported that from approximately 11:30 UTC on June 12, 2021, an increase in the intensity and frequency of Strombolian activity is observed at the level of the southeast crater of Etna, which produces a discontinuous ash emission which is scattered in the summit area. From approximately 11:30 UTC, the average amplitude of the volcanic tremor showed a clear increase and around 12:15 UTC, it reached the high range; At present, the parameter still shows a clear increasing trend. The centroid of volcanic tremor sources is located in the area of ​​the southeastern crater at an altitude of 2900-3000 m above sea level. At the same time, infrasonic activity has also intensified and shows a clear trend of increase, both in terms of the rate of occurrence and in the energy of infrasonic events, which are located in the south-eastern crater. A further increase in Strombolian activity at the southeast crater is observed from around 12:50 UTC. According to the forecast model, the eruptive cloud produced by this activity disperses in the SW direction. In addition, an overflow of lava is observed from the southern flank of the southeast crater which extends in a southwest direction. The mean amplitude of the volcanic tremor continues to show an increasing trend, in the range of high values. The center of gravity of the source of the volcanic tremor is located in the south-eastern crater area at an altitude of 2900-3000 m above sea level. From around 7:30 p.m. the Strombolian activity of the southeast crater passed to a lava fountain. Based on the forecast model, the eruptive cloud produced by the current activity disperses to the south. As for the lava overflow, it is well fed and its front has reached an altitude of about 2800 m above sea level. In addition, an additional flow is observed which extends in an easterly direction and which around 19:00 UTC reached the upper western edge of the Bove valley.From around 21:15 UTC, the mean amplitude of the volcanic tremor showed a rapid decrease and reached the base of the high value range around 22:50 UTC. Currently, this parameter shows a new downward trend.At 11:16 pm we observe that the lava fountain of the southeast crater has ceased; instead, Strombolian activity continues. The eruptive cloud produced during the fountain dispersed towards the SSE and news of a fallout of volcanic material was received at the Sapienza refuge. Lava overflows are reported.The decrease in the average amplitude of the volcanic tremor, reported in the same press release, also continued in the following hours and around 00:30 the parameter reached the range of low values. Currently, the amplitude of the tremor shows a stationary trend within this level. The center of gravity of the springs of the volcanic tremor is located in the area between the Bocca Nuova crater and the southeast crater, at an altitude of 2900-3000 m above sea level. Previously INGV reported a few eruptive episodes at Etna's Southeast Crater (SEC) during 31 May-6 June. Occasional ash emissions were noted during 4-5 June, and the lava flow had ceased.As of the 4th of June INGV reported that a weak intracrater Strombolian activity that continues at the south-eastern crater of Etna; the lava overflow generated during the last lava fountain event cooled. In addition, intracrater explosive activity at the Bocca Nuova crater and at the same time occasional ash emissions are observed at the north-eastern crater which disperse rapidly in the summit area. From the seismic point of view, the mean amplitude values ​​of the volcanic tremor are at a medium-high level, still showing small fluctuations. The centroid of the volcanic tremor sources remains located in the area of ​​the SE crater at an altitude of about 2900 m s.l.m. Around 13:30 UTC, the images from the surveillance cameras show an increase in Strombolian activity at the level of the Southeast crater. The activity produces discontinuous ash emissions which disperse rapidly near the summit area of ​​the volcano. From the seismic point of view, from around 13:30 UTC, it is observed that the average amplitude values ​​of the volcanic tremor are at a medium-high level showing a clear tendency to increase. The centroid of the volcanic tremor sources remains located in the SE crater area at an altitude of about 2900 m asl.From around 4:20 p.m. UTC, the passage of Strombolian activity from the Southeast crater to the lava fountain can be observed from surveillance cameras. The eruptive cloud formed by the Lava fountain, which according to the forecast model disperses in the SE direction, reaches a height of about 6500 m above sea level.From about 17:00 UTC, we observe a rapid decrease in the average amplitude values ​​of the volcanic tremor, which is placed at a high level with a tendency to decrease.At around 5:30 p.m. UTC, the lava fountain in the southeast crater gradually depleted. In accordance with the forecast model, the dispersion concerned the south-eastern sector of the volcano. INGV staff in the field report the impact of the products to Aci Castello, Tremestieri and Catania (Ognina). INGV report of 21:22 UTC announced that the explosive activity at the Southeast crater has ceased, however the lava overflow which extends in the southwest direction; the lava flow is still fed and the flow front is located at an altitude of about 2800 m above sea level. INGV reported that after a first increase around 06:00 UTC on June 2, showed around 08:00 a sudden increase reaching high levels. From around 08:30 UTC, the transition of Strombolian activity from the Southeast Crater to a lava fountain is observed from surveillance cameras. Based on the forecast model, the eruptive cloud disperses eastward. At approximately 10:45 UTC, the lava fountain in the southeast crater ceased. In accordance with the forecast model, the dispersion concerned the eastern sector of the volcano. INGV staff in the field report the fallout from the products north of Zafferana, in the town of Petrulli and in Santa Venerina. Due to cloud cover, it was not possible to determine the height of the eruptive cloud, but from information received from INGV personnel in the field, the cloud reached a height of about 5-6 km above sea level. In addition, the lava fountain produced an overflow of lava from the southern slope of the southeast crater, which spread to the southwest. From around 10:20 UTC a rapid decrease in the mean amplitude values ​​of the volcanic tremor is observed, which always remains at a high level, with even an increasing trend; it results from 2:00 p.m. UTC by an increase in the explosive activity of the SEC.From around 6:50 p.m., a small strombolian activity is observed at the SEC. INGV reported that from 03:45 UTC on May 30, 201, we observe the resumption of Strombolian activity at the Southeast crater.From around 01:10 UTC, there is a gradual increase in the average amplitude of the volcanic tremor whose values ​​reached high levels around 03:30 UTC. The volcanic tremor source centroid is located in the southeastern crater region at an altitude of about 2900 m s.l.m. From around 03:40 UTC, an increase in infrasound activity was observed. Analysis of soil deformation data shows the onset of a very weak disturbance at some stations of the clinometric network around 03:30 UTC. At 04:40 UTC,a lava fountain was in progress at the level of the Southeast crater. According to the forecast model, the eruptive cloud produced by the current activity is dispersing towards the SE. The amplitude of the volcanic tremor has reached very high levels and, at the same time, the appearance of an infrasonic tremor is observed, both located in the Southeast crater. The analysis of the deformations of the ground shows, from 04:00, an increase in the disturbance of the clinometric signals. INGV reported that the day of May 28 at the south-eastern crater of Etna was marked by three intense eruptive episodes. The first eruptive episode occurred between 7 am and 8:30 am Analysis of the CCTV images shows that the eruptive cloud reached a height of approximately 6500 m above sea level. A second fairly brief and relatively light episode of explosive activity marked the southeastern crater in the afternoon of May 28, 2021, barely 9 hours after the previous eruptive episode and from 15:40 UTC the resumption of explosive activity at the Southeast crater is observed. Based on the forecast model, the eruptive cloud produced by the current activity disperses towards E. Analysis of the CCTV images shows that the activity of the lava fountain described above, started around 4:00 p.m. UTC, was very discontinuous and by 4:15 p.m. UTC it was already over. In addition, the eruptive cloud, dispersed in the E direction, did not exceed 5000 m altitude.Third eruptive episode in Etna in a little over 12 hours, on the evening of May 28, 2021. Lava fountains 300 to 400 m high, lava flows towards the upper southwest flank (far from inhabited areas) and ashes and lapilli fall to the east. From around 19:00 UTC an increase in the average amplitude of the volcanic tremor is observed, whose values ​​are currently at high levels. The location of the center of gravity of the sources of volcanic earthquakes is located in the region of the south-eastern crater at an altitude of about 3000 m above sea level. In addition, from around 19:00 UTC, an increase in infrasonic activity is observed, localized in the south-eastern crater. INGV reported that on May 27th from around 07:40 UTC, there was a gradual increase in the average amplitude of the volcanic tremor whose values ​​reached high levels around 10:50 UTC. The center of gravity of the volcanic tremor sources was located in the south-eastern crater area at an altitude of about 3000 m above sea level. Ashes were produced by a strong explosive activity underway at the southeast crater. The poor visibility conditions did not allowed observing the explosions, while the hot material produced which abundantly covers the sides of the cone. Based on the forecast model, the eruptive cloud produced by the current activity disperses in the ESE direction.From around 12:50 UTC, despite the presence of cloud cover in the summit area, Strombolian activity at the southeast crater was observed to intensify, presumably passing into a lava fountain. It was not possible to estimate the height of the eruptive cloud which, according to the forecast model, was dispersing in the ESE direction. Ash falls on the ground have been reported in Giarre, Milo and Fornazzo. From around 13:00 UTC, we observe a decrease in the average amplitude of the volcanic tremor, whose values ​​are currently falling to average levels. INGV reports on May 26 at 03:19 loc. / 01:19 UTC the resumption of weak Strombolian activity at the SE crater. At 03:45 (01:45 UTC), Strombolian activity increases at the SE crater. Based on the forecast model, the eruptive cloud produced by the current activity disperses towards E. From around 00:40 UTC there is a sudden increase in the mean amplitude of the volcanic tremor which is currently at high levels. The center of gravity of the sources of volcanic tremor is located in the region of the south-eastern crater at an altitude of 2800 m s.l.m. Strombolian activity evolves towards the lava fountain around 01:55 UTC. According to the forecast model, the eruptive cloud produced by the current activity disperses to the east. From around 02:00 UTC, a decrease in the average amplitude of the volcanic tremor was observed which continued, with some fluctuations, in the following hours. At 05:47 (03:47 UTC) the analysis of the images of the CCTV cameras shows that the lava fountain has ceased its activity. INGV reported that on May 24, 2021, from 18:58 UTC, the resumption of Strombolian activity at the SE crater is observed; The forecast model indicates the dispersion of the eruptive cloud in the ENE direction. Simultaneously with the resumption of Strombolian activity, a sudden increasing in the average amplitude of the volcanic tremor, which has reached medium-high values.he location of the center of gravity of the sources of the volcanic tremor is in the area of ​​the SE crater at an altitude of about 2800 m slm .. Also at 18:58 UTC there is an increase in both the rate of occurrence of infrasound. events and their magnitude. The events are located in the SE crater area. At around 8:10 p.m. UTC, a further increase in the average amplitude of the volcanic tremor is observed, which in a few minutes reaches very high levels. The center of gravity of the volcanic tremor sources continues to be located in the SE crater region at an altitude of about 2700 m s.l.m. At approximately 20:25 UTC, Strombolian activity at SE crater turned into a lava fountain with the formation of an eruptive cloud which disperses according to the forecast model in the ENE direction. The eruptive column reached 7,000 meters asl. during Fountaining. A decrease in the value of the parameters begins around 9.45 p.m. UTC, and the INGV announces at 10:07 p.m. UTC the end of the lava fountain activity. A lava flow is observed which propagates in a southwest direction.  INGV reported that on May 22, 2021 from 17:30 UTC, an increase in the amplitude of the volcanic tremor is observed, which is currently on average values. An increase in the explosive activity of the southeast crater is observed. The current Strombolian activity is accompanied by an abundant emission of ash. The forecast model indicates the dispersion of the eruptive cloud to the east. In its report of May 22 at 20:39 UTC, the INGV indicates that Strombolian activity at the southeast crater has turned into a lava fountain. The forecast model indicates the dispersion of the eruptive cloud in the ENE direction.Beautiful lava fountains up to 500 m high are described and a small lava flow on the upper southwest flank. The volcanic tremor is still increasing to very high values. The sources of the tremor are located near the SE crater. at a depth of approximately 2.8 km above sea level. The rate of occurrence of infrasonic events is very high. At 22:38 UTC, the lava fountain is over. The forecast model indicates the dispersion of the eruptive cloud to the east. From 01:51 UTC to 23.05.2021 through surveillance cameras, the resumption of explosive activity at the southeast crater with emission of ash was observed. This activity lasted continuously until approximately 02:03 UTC. Currently, discontinuous intracrateric explosions are observed with low ash emissions which disperse rapidly. The forecast model indicates the dispersion of the eruptive cloud towards E. Between 01:30 and 02:15 UTC, the amplitude of the volcanic tremor recorded a sudden increase and a subsequent decrease in accordance with volcanological observations. Infrasound activity remained at low levels, both in the rate of occurrence and in the energy of events.INGV reported that Etna presented two strong explosions on the night of April 24-25 and on the morning of April 26 at the Southeast Crater; the ash emissions quickly dispersed. From around 6.30 p.m., there is a slight resumption of Strombolian activity at the CSE. Activity remains modest for now. In the evening of April 27, a slight Strombolian activity is observed at the south-eastern crater, seen from Monte Fontane on the eastern flank of the volcano, with falls of incandescent materials on the slopes. INGV reported that after a series of paroxysmal episodes between February 16 and April 1 (and all the activity that preceded it in the last two years), Etna presented two strong explosions on the night of April 24-25 and in morning of April 26 at the Southeast Crater; the ash emissions quickly dispersed. From about 6.30 p.m., there is a slight resumption of Strombolian activity at the CSE. Activity remains modest for now. From a seismic point of view, the average amplitude of the volcanic tremor shows an increasing trend, currently focusing on medium-low values. The location of the source of the tremor is located near the SE crater area at 2,500 m. altitude. Regarding infrasound activity, it remains at medium-low levels, with events localized in the area of ​​the SE crater. Deformation data does not show significant changes. INGV reported continuing episodes of lava fountaining, intra-crater explosive activity, and discontinuous ash emissions at Etna's Southeast Crater (SEC) during the week of 29 March-4 April, though weather conditions often prevented visual observations. Gas emissions rose from the other summit craters and occasional explosive activity was visible; puffs of ash sometimes rose from Voragine Crater during 31 March-2 April.INGV report on 1st of April at 9:37 p.m. noted from surveillance cameras, that the lava flows that took place in the upper western sector of the Valle del Bove (at least three main ones can be distinguished) seem less fed by the fronts which are located between approximately 2100 m and 1700 m of altitude. In addition, still on the western edge of the Valle del Bove, there are thermal anomalies probably attributable to the fronts of other lava flows which have not yet overflowed from the edge and therefore remain confined to an altitude of around 2700 m. above sea level. The lava overflows from the eastern edge of the SE crater cool down further, mainly blocks are observed which, standing out from the fronts, roll towards the Valle del Bove. Finally, the flow that has developed in the SW direction no longer appears powered and cooled. From the surveillance cameras, no explosive activity was observed at the SE crater; the intracrater activity at the NE and BN crater remains, and the intracrater explosive activity of the Voragine crater which generates discontinuous ash emissions which are rapidly dispersed in the summit area.As of the 1st of April, at around 11:20 UTC, the decrease in explosive activity at the SE crater was observed. Due to the cloud cover, the observation of the current activity from the surveillance cameras is very limited and discontinuous, but the lava flows and the the first lava overflow, which took place in the Valle del Bove, and the second overflow, which reached the eastern base of the SE crater, appear to be less fueled than previously reported. The cloud cover does not currently allow any observation of the lava flows which have spread to the SW, S and ESS. INGV staff on the ground this morning confirms that the front of the SW lava flow is about 2,600 m above sea level. and that the SSE flow front also reached an elevation of approximately 2600 m. at the time of observation.INGV reported that the thermal anomaly, observed by surveillance cameras from around 09:00 UTC on March 31, 2021 at the south base of the southeastern crater of Etna, was produced by the site of a flow of lava. This, observed by INGV staff in the field, wasgenerated by the same field of fractures that fed the lava flows that developed in the same area from March 2021. The eruptive activity at the level of the other summit craters remained unchanged. From approximately 17:50 UTC, an increase in Strombolian activity was observed with the emission of ash at the SE crater. According to the forecast model, the eruptive cloud disperses in the SSW direction. Concerning effusive activity, the lava flow expanding in the SSE direction was well fed and the front has reached the high edge of the western part of the Valle del Bove. From around 11:00 p.m. UTC on March 31, Strombolian activity in the SE crater gradually turned into a lava fountain. According to the forecast model, the ash cloud, which reached a height of about 7000 m above sea level, disperses in the SSW direction. At the same time, starting at 12:18 UTC on April 01, an overflow of lava is observed from the eastern edge of the SE crater which expands in the upper part of the Valle del Bove. The effusive vent was active at 2:30 UTC and was feeding a lava field made up of several lava flows that were propagating in the SSW, S and SSE direction. In the observation period, the SSW and S lava flows appeared to be poorly fed and their fronts The flow of the SSE was well fed and its front, which rose to about 2,750 m above sea level, had almost reached the edge of the Valle del Bove. INGV reported that a powerful explosion, followed by a loud noise and a compression wave occurred at 07:07 local time today March 30, 2021 at the southeastern crater of Etna. Since then, a weak resumption of Strombolian activity has been observed at the SEC, with a center of gravity of the tremor from 1:30 p.m. under the southeast crater.On the other hand, the explosive activity continues in the other summit craters - Bocca Nuova, northeast crater and Voragine -, especially with frequent puffs of ash at the Voragine crater.The infrasonic activity, located in the SEC is increasing. INGV reported that a new increase in Strombolian activity was observed at the SE crater on March 23, 2021 at around 8:32 p.m. UTC. At around 10 p.m. UTC, a lava fountain is underway at SE Crater. According to the forecast model, the eruptive cloud produced by the current activity if it is dispersed towards the southwest. At 02:37 GMT a pyroclastic flow was also used for the INGV-OE surveillance cameras, even confirmed for the INGV staff present on the scene. The flow was oriented towards the Bove valley reaching about 2900 m in height. On the seismic level, the increase in the magnitude of the volcanic tremor on very high values ​​continued.From 02:30 UTC, the average amplitude of the volcanic tremor is decreasing, while still remaining on high values.Two flows were generated by the activity, one well fed towards the Bove Valley which reached around 1900 to 1800 m, and another less fed towards the south which settled in the summit area. The INGV announced at 5:43 am UTC that according to the forecast model, the eruptive cloud produced by the current activity if it was dispersed towards the south-east. The maximum height estimated by satellite east of 6000 m at sea level. It was also reported by staff INGV-OE to relapse of ash in Catania. INGV reported that on 19th of March, two strong explosions that occurred at 06:15 h 06:15 and 06:29 h were heard at the Southeast crater. The amplitude of the tremor increased, reaching the high level threshold. The sources of the signal were located under the southeast crater at a depth of about 2500 m. asl. Infrasound activity was currently increasing with 1 to 2 events per minute. Explosive activity at the southeast crater continued. The forecast model indicates the dispersion of the eruptive cloud in the ENE direction. As of the 17th of march, INGV reported that from 00:55 UTC, there was an increase in Strombolian activity at the Etna CSE. The level of tremor increased rapidly to reach high values. The source of the tremor was located southeast of the SE crater at a level of approximately 2,800 meters above sea level. Strombolian activity from the southeast crater shifted to a lava fountain from around 02 a.m.  UTC. Due to the cloud cover, it was not possible to continuously observe the activity in progress. From surveillance cameras from 02:25 UTC, an overflow of lava occurred from the southeast crater towards Valle del Bove was observed.At around 6 a.m., the INGV reported that the amplitude of the tremor was clearly decreasing and at average levels. The sources were located south-east of the SE crater at a depth of about 2000 m above sea level. The infrasonic signal did not detect volcanic activity. The lava fountain activity at the South Crater ends after 6 a.m.A moderate Strombolian activity persisted. INGV reported that the 13th climax in a month at the southeastern crater of Etna occurred under heavy cloud cover on the night of March 14 to 15, 2021. From the surveillance cameras from 20:10 UTC on 14.03.2021, the resumption of Strombolian activity at the Southeast crater was observed. At the same time, Strombolian activity continued at the craters of Voragine, Bocca Nuova and the northeast crater. The average amplitude of the volcanic tremor showed an increase reaching high values. The sources of the quake were located in the CSE at a depth of about 2.5 km asl. Following a further increase in the mean amplitude of the volcanic tremor, the second level threshold is reached, the source being located in correspondence with the south-eastern crater at about 3000 m altitude. Infrasound activity was also supported both in the rate of occurrence and in the energy of events. The strombolian activity of the south-eastern crater has turned into a lava fountain. Due to the cloud cover, it was not possible to observe the activity in progress.Around midnight, the National Institute of Geophysics and Volcanology, Etneo Observatory, reports that an overflow of lava is observed from the East zone of the SE Crater which extends towards the Valle del Bove. In its report of 03.15 / 03.43 am, the INGV indicates that the activity of the lava fountain at the South-East crater is over. Moderate Strombolian activity persists and the lava flow that expands along the western slope of the Valle del Bove continues to be fed. From the seismic point of view, the amplitude of the volcanic tremor has decreased, returning to average values. The source of the tremor is located near the SE crater at a depth of 2500 m above sea level. Analysis of the clinometric data of the paroxysmal event showed variations at different stations, with cumulative maximum values ​​(less than 3 microradians) recorded at the Cratere del Piano (ECP) station. GNSS network data over the past few hours did not show significant changes.As of the 12th of March, INGV reported that a weak strombolian activity occurred at the southeastern crater of Etna at the start of the day, at the same time the intracrater explosive activity continued at the Voragine craters, at Bocca Nuova and at the crater. The average amplitude of the volcanic tremor showed an increase reaching high values ​​and the sources of the tremor were located in the CSE at a depth of about 2.5 km s.l.m. From approximately 05:30 UTC, there was an increasing in the intensity and frequency of Strombolian activity at the southeast crater. The activity produced an eruptive cloud which reached a height of about 4000 m above sea level, and based on the forecast model provides a dispersion of the eruptive cloud and relapse of ash to the east. Eruptive activity towards the other craters continues.From 06:30 UTC, Strombolian activity at the southeast crater intensified further; in addition, from 06:54 UTC, an overflow of lava was observed from the eastern area of ​​the CSE which expands towards the Valle del Bove; at this time, the lava front was at an altitude of about 3000 meters above sea level. From the seismic point of view, the increase in the amplitude of the volcanic tremor continued to reach high values ​​and the source of the tremor is near the south-eastern crater at a depth of about 2.5 km s.l.m. The number of infrasound events was high and their location seems to be close to the Southeast crater. At 07:41 UTC, the INGV announced that the Strombolian activity has turned into a lava fountain with the production of an eruptive cloud up to a height of about 6000 m. in an easterly direction. The lava flow continued to expand towards the Valle del Bove and has reached altitude 2800. At 8:39 UTC, the observatory reported that the eruptive cloud, produced by the activity in progress, reached an altitude of about 8,500 meters and dispersed towards the east; an ash fall on the town of Fleri has been reported. The lava flow produced by the overflow was fed and the flow has reached an altitude of about 2,100 meters above sea level. INGV reported that strombolian activity resumed at the level of the SE crater of Etna on March 9, 2021. As for the average amplitude of the volcanic tremor from 17:30 GMT, there was an increase, which remained in average values -high. The source of the quake was located at the SE Crater at a depth of about 2,500 meters above sea level. The infrasound activity also increased and is localized in the SE crater. Data from GNSS soil deformation monitoring networks and clinometry showed no significant changes.Surveillance camera showed simultaneous explosions at the Voragine crater and the southeast crater. March 9, 2021 in the evening. From around 19:13 UTC, an overflow of lava could be observed from the SE crater towards the Valle del Bove. From 20:00 UTC, there was an increase in strombolian activity at the CSE, accompanied by the emission of ash which rapidly dispersed in the atmosphere towards the NE. The lava flow continued to be fed and the front is at an altitude of about 2900 meters above sea level advancing towards the Valle del Bove. The intracrateric explosive activity at the summit craters continued. After a short return phase, the average amplitude of the volcanic tremor, from 9:30 p.m. GMT, began to increase again to reach the second level threshold, with the Strombolian activity located at the southeast crater, which increases to a lava fountain; the lava flow is fed and reached an altitude of about 2200 meters above sea level. Due to cloud cover, it is not possible to observe the ongoing activity continuously. The activity of the lava fountain at the southeast crater ended at 03:30 UTC, the lava emission that is developing along the western slope of the Valle del Bove continues to be moderately fed and at the time the lava front reached the altitude of about 1800 m asl. From the seismic point of view, the amplitude of the volcanic tremor has returned to average values. INGV reported that rom around 1.00 UTC on 7th of March,, a small lava flow is observed emitted by the effusive vent which opened on March 4, 2021 at the base of the SE crater. At the same time, the resumption of Strombolian activity at the level of the SE crater was also observed. Strombolian activity continues confined to the craters of Voragine, Bocca Nuova and and NE. Also from 1.00 UTC there is an increase in the volcanic tremor which at the moment was on medium-high values. The source of the tremor is located near the SE crater. Infrasound events were few in number and low in energy. From 01:30 UTC there was a further rapid increase in the amplitude of the volcanic tremor which is currently at high values. The source of the tremor was located near the SE crater.From around 06:00 UTC, the Strombolian activity at the SE crater (SEC) passed through a lava fountain and from 06:20 UTC, it formed an eruptive column which exceeded the height of 10,000 m above sea level. . dispersing eastward. As for the lava flows, which develop in the Valle del Bove, due to the cloud cover, it is not possible to make observations to estimate the share of the fronts. The volcanic tremor of the last half hour reached a very high average amplitude and is constantly located near the SE crater The number and energy of infrasound events are high and their locations are in the crater of the SEC. From around 07:20 UTC, the SE Crater lava fountain ceased. INGV reported that ninth paroxysm occurred in two weeks at Etna. As of 4th of March from 00:20 UTC, a resumption of weak strombolian activity at the SEC is observed. A slight increase in the mean amplitude of the volcanic tremor is observed. Infrasound activity also shows an increase in the number of events. The locations of the tremors indicate a movement from the source to the SEC. From 01:00 UTC, there was an increase in strombolian activity at the SEC, accompanied by the emission of ash which rapidly disperses in the atmosphere towards the NE. At the same time, the Voragine crater also shows lively Strombolian activity with episodic explosions that rise above the level of the crater rim. the Strombolian activity at the SEC gradually increased and to pass at around 02:20 UTC to the stage of  lava fountain. At the same time, there was a further gradual increase in the amplitude of the volcanic tremor, the source of which was located in correspondence with the SEC at nearly 3000 m. Then from 03:05 UTC, an overflow of lava can be observed from the SEC towards the Valle del Bove.From 02:50 UTC, there was a decrease in the amplitude of the tremor which is at an average level; from 3:15 a.m., there wa also a decrease in infrasonic activity, both in the frequency of occurrence and in the amplitude of the signals. At 4:15 a.m., the strombolian activity at the SEC  was also significantly reduced while the lava overflow towards the Valle del Bove remains active. From around 06:00 UTC, the tremor has started to rise, returning to a high level, while intrasonic activity remains low. The small flow continues to be fed through an open mouth at the eastern base of the CSE which shows spattering activity. The activity also continues at the other summit craters. Previously, INGV reported that the 8th paroxysm of Etna that occurred on March 2, 2021, was largely masked by atmospheric conditions, only the top of the plume being observed. From 10:45 UTC, there is a slight increase in the mean amplitude of the volcanic tremor, and the resumption of weak Strombolian activity at the southeast crater / SEC. Infrasound activity also shows an increase in the number of events. From 11:34 GMT, Strombolian activity in the SEC increases, accompanied by the emission of ash which quickly disperse into the atmosphere. After a short stationary phase, the average amplitude of the volcanic tremor, around 11:30 GMT, started to increase again, the sources moving towards the south-eastern crater.From 12:24 GMT, a rapid increase in the amplitude of the volcanic tremor was observed, whose source is located at the southeast crater at about 3000 m. Infrasound activity was also supported both in the rate of occurrence and in the energy of events. The strombolian activity of the south-eastern crater has turned into a lava fountain. Due to the cloud cover, it was not possible to make continuous observations. The INGV OE reported that activity of lava fountains at the SEC has ceased at 14:50 GMT. From 14:40 UTC, there was a rapid decrease in the average amplitude of the volcanic tremor which reached average values ​​at 15:00 UTC.At 15:06 UTC, an ash fall was reported in the southern sector of the volcano. In particular in the areas of: San Gregorio (motorway exit); Trecastagni; Aci S. Antonio; Pedara and Catania. INGV reported that after a small calm of a few days, Strombolian activity resumed at the southeast crater of Etna on February 28 at around 7.45 am local time, with a sudden increase in the tremor. Strombolian activity, characterized by a continuous jet, was mainly concentrated in two vents and reached an initial height of about 300 m. An overflow feeds a lava flow towards the Valle del Bove. At 10:20 a.m. local time, a sudden decrease in tremor to medium-low values ​​was observed. The source of the quake remains in the area of ​​the SE crater at a depth of about 2,600 m above sea level. At 10:33 a.m. local time, the SEC fountain stopped almost suddenly, while the lava flow to the Valle del Bove remained active. A resumption of Strombolian activity in the SEC, accompanied by the emission of ash is observed from 11:20 a.m., with a further increase in the average amplitude of the volcanic tremor ... to drop around 12 p.m. The source of the tremor is still located in the area of ​​the SE crater, at a depth of about 2500 m above sea level, while showing a gradual slide towards the other summit craters, during the last hours.INGV reported that on 24th of February, at 6 p.m. local time there is an increase in the intensity and frequency of Strombolian activity at the southeastern crater of Etna, this activity involves two mouths located in the easternmost part of the southeast crater. A weak ash emission persists. The phase of increase in the amplitude of the volcanic tremor continues, showing medium-high values.he sources are located under the south-eastern crater at a depth of about 2500 m above sea level. Infrasound activity is also increasing and the sources of the events are located in the southeast crater. At 7 p.m. local, an increase in Strombolian activity was recorded at the CSE. In particular, the two mouths where Strombolian activity was concentrated produced a lava fountain, the height reached by this activity was about 400 m. The ash emission activity into the atmosphere continued above the SEC. From the surveillance cameras from 8:30 p.m. a lava overflow from the CSE towards Valle del Bove was observed. At 22:00 local time, the lava fountain reached the height of about 500 m from the edge of the crater, the eruptive column expands vertically for several kilometers. A well-fed lava overflow was in progress in the southwestern sector of the CSE. The stream flowing in Valle del Bove wais always fed. The average amplitude of the volcanic tremor showed high values ​​with a tendency to increase further. The source location remains within the CSE area at a depth of approximately 2800 m above sea level. Infrasound activity is also high in both the rate of occurrence and the energy of the events. The localization of infrasound events remained with the SEC. At 23:35 the activity of the lava fountains at the SEC has ceased, the lava flows remain active in the southwest sector and in the east zone. As for the average amplitude of the volcanic tremor, after a phase of increase to very high values, at 21:20 UTC, it showed a sharp drop reaching the average level, where it is still found. The source of the quake is located in the SEC area at a depth of about 2900 m above sea level. At the same time, the infrasound activity also suffered a sharp break. decrease in both the rate of occurrence and the energy of events, which are localized to the SEC. Previous paroxysm - INGV reported that on 22nd of February around 8:50 p.m., a weak Strombolian activity occurred at the level of the SE crater. The average amplitude of the volcanic tremor gradually increases while remaining at the current state at the average level. At 9:10 p.m., the INGV recorded an increase in the frequency and intensity of Strombolian activity at the south-eastern crater, with the launch of products in abundance outside the rim of the crater. The mean amplitude of the volcanic tremor shows a further sudden increase and is in the high level. The source of the tremor shows a gradual displacement of the Bocca Nuova towards the SE crater, at a depth of 2500 m above sea level. The infrasonic activity is dramatically increased with a high rate of occurrence of infrasonic transients. These are located in correspondence with the SE crater. At 22:05 GMT, the eruptive activity further intensified with jets of lava 300m high above the SE crater. The average amplitude of the volcanic tremor shows high values ​​with an increasing trend. The source of the tremor is located under the SE crater, in a depth range of 2800 to 2900 m above sea level. At 22:27 UTC, a second vent was activated in the SE crater producing lava fountain activity. At 22:28 UTC, there was an overflow towards Valle del Bove. The lava front is currently at an altitude of about 3000 m. Activity around 23:30 GMT intensified further, generating lava jets up to 1,000 meters high above the SE crater. This activity produced an eruptive column which rose several kilometers from the summit of Etna. At the same time, the activity started another lava overflow from the mouth of the saddle, feeding a lava flow directed towards the southwest. As of 00:15 GMT, there was a sudden decrease in the lava fountain. The effusive activity of the two lava flows continues; they overlap with the streams of the previous episodes. The explosive activity at the summit craters also continues. The average amplitude of the volcanic tremor, after reaching its maximum value at 23:50 UTC, suffered a sudden decrease, while remaining in the upper range. The source of the tremor is located in the area of ​​the SE crater, at a depth of 2700-2800 m above sea level. From 03:50 GMT, there is an increase in the frequency and intensity of Strombolian activity, accompanied by the emission of ash at the SE crater, with the launch of products abundantly outside the rim of the crater until 'at a height of about 300 m. At the same time, two small lava flows formed, one towards the Valle del Bove and the other towards the southwest. Regarding the amplitude of the volcanic tremor, after reaching average values, after the end of the previously communicated fountain activity, from 3h50 GMT, it showed a sudden increase moving upwards. The location of the source remains below the SE crater at an altitude of about 2,800 meters above sea level. Previously paroxysm : as of the 22nd of February, INGV reported that after 04:15 UTC and the end of the fourth paroxysmal episode of Etna, no more eruptive activity occurred at the Southeast Crater. At the other summit craters, on the other hand, the explosive activity continues as observed in the last days. In the hours following the activity of the lava fountain and until the present state, the average amplitude of the volcanic tremor has remained confined mainly to the average level. INGV reported that a weak Strombolian activity at the eastern mouth of the SE crater was observed from 17:30 UTC on February 20, 2021. The average amplitude of the volcanic tremor gradually increases, being located in the average level. The source of the tremor is located under the SE crater, at a depth of 2500-2600 m above sea level. From around 19:30 UTC, the average amplitude of the volcanic tremor showed another sudden increase, in the high level. Lava overflow was observed from the mouth east of the SE Crater, which began shortly after 9:30 p.m. UTC. The lava flow was s heading towards the Valle del Bove. The amplitude of the volcanic tremor continued to increase. Around 10 p.m., the activity at the eastern mouth of the SE crater gradually shifted to a pulsating lava fountain. The lava flow generated by the overflow on the eastern flank of the cone, previously communicated, has traveled approximately 150-200 m.At 12:28 am - 12:30 am on February 21, according to the INGV, the activity of the lava fountain further intensified, generating jets of lava at an altitude of 800-1000 m above the southeast crater. , but remains however confined to the eastern part of the south-eastern crater. A relatively diluted eruptive column forms at the top of the volcano. The lava flow directed towards the Valle del Bove has reached a length of about 1 km, with a front that rises to about 2800 m. Shortly afterwards, an overflow of lava began from the "saddle mouth", feeding a lava flow directed towards the southwest. The average amplitude of the volcanic tremor shows high values ​​with a tendency to increase further. The location of the source of the tremor remains below the SE crater. Infrasound signals also increase in both the frequency of occurrence and the energy of infrasonic transients. INGV report dated on 19th of february 9:20 UTC mentionmed an intense lava fountain at the southeast crater, which produced an eruptive cloud that dispersed into the atmosphere at an altitude of about 6.000 m in the southeast direction. The lava flow that propagated in the direction of the Valle del Bove continued to be fed and the front reaches an altitude of about 2.700 m. asl. All seismic parameters remained at high values. The distortion data from the GPS network did not record any significant variations, limited variations (0.1 - 1 microradians) of the clinometric network were recorded.The eruptive cloud produced by the lava fountain pushed by the wind to the east south-east causes the fall of ash and lapilli on the colonies of this sector of the volcano. The lava flow which propagates in the Bove valley remains at an altitude of about 2700 m above sea level. All seismic parameters remain at high values. From around 9:30 a.m. UTC, the average amplitude of the volcanic tremor and infrasound activity decrease and return to levels comparable to those which preceded the activity of the lava fountain. Around 09:50 UTC, the lava fountain is exhausted, and the lava flows that have spread in the Valle del Bove, are no longer supplied and are maintained at an altitude of around 2600 meters asl.The eruptive cloud, produced by the explosive activity, dispersed in an east-southeast direction at an altitude of about 10,000 m asl, causing ash and lapilli to fall over the inhabited areas on the east side of the volcano.  INGV reported that at the end of last night's paroxysmal activity, Etna's eruptive activity declined sharply, with isolated explosions from the southeast crater and other summit craters. Since the early hours of Friday the average amplitude of the volcanic tremor has remained at average values, with a progressive upward trend. The location of the volcanic tremor affects the area of ​​the summit craters, affected by the different sources that are activated under each active crater, in the depth range between 2800 and 2900 m above sea level. During the lava fountains phase, several lava flows developed, in addition to the first, which spread east, northeast, and southwest. The most important flow, directed towards the east, reached a length of approximately 3.5 to 4 kilometers. The flow front stopped a few hours later at an altitude slightly below 2000 m. a new lava overflow from the southeast crater is observed, starting just before 07:55 UTC. The lava flow descends the east side of the cone, towards the Valle del Bove. The amplitude of the tremor is increasing, and returns to the high value zone.INGV reported that another violent climax during the night 17th to 18th of February from the South-East crater of Etna, the second in less than 36 hours: A new lava overflow from the Southeast crater is observed, which began just before 10:30 p.m. UTC on February 17. The lava flow descends the east side of the cone, towards the Valle del Bove. The tremor increases and is raised. At 01:13 local time on February 18, a lava fountain animates the south-eastern crater. The lava flow reported in the previous press release has currently traveled about 1 km, with a front at an altitude of about 2,700 m. An eruptive column heads south-east. Around 1:25 am local, a second flow of lava flows on the north side of the south-eastern crater, e, direction of the Valle del Leone. The average amplitude of the volcanic tremor shows high values ​​with an increasing trend. The source of the tremor is located under the SE crater, in the depth interval 2800-2900m., And the infrasound activity seems to be high. The lava fountain activity ended at approximately 00:55 UTC. The lava flows progress slowly but are no longer fed. The main lava flow extends over the bottom of the Valle del Bove at an altitude slightly below 2000 m, after a course of 3.5 to 4 km. The small flow towards the Valle del Leone is about 1 km. long, with a lava front at an altitude of about 2900 m. Another overflow occurred on the south side of the southeast crater, feeding a small flow to the southwest.The eruptive cloud was blown towards the south-east by the wind, causing fallout of ash and lapilli on this sector of the volcano. INGV reported that in the early hours of February 15, 2021, a gradual intensification of explosive activity was observed at the southeastern crater of Etna.While activity is continuous at the eastern mouths of the south-eastern crater, sporadic and sometimes violent explosions are also observed at the "mouth of the saddle". The intracratical explosive activity also continues in the craters of Bocca Nuova, Voragine and Northeast. Regarding the average amplitude of the volcanic tremor, an upward trend is noticed from the first hours, with a significant increase from around 16 GMT.On February 16, starting at around 4:00 p.m. UTC, the start of a lava overflow was observed from the east side of the southeast crater. At 16:05 UTC, it produced a modest subsidence of the side of the cone generating a pyroclastic flow which developed along the western wall of the valley of the Bove. The phenomenon produced an ash cloud which quickly dispersed by the high wind to the south.From 4:10 p.m., the explosive activity at the Southeast crater increased further, evolving into lava fountaining activity, with the formation of an ash cloud which disperses to the South. (Video) From a seismic point of view, the average amplitude of the volcanic tremor over the last few hours has remained at high values, increasing from 4:00 p.m. UTC.The source of the quake remains confined under the SE crater in the depth range of 2,900 to 3,000 meters above sea level. The increase in the tremor is accompanied by violent infrasound activity with high amplitude signals. A fall of lapilli, of centimeter dimensions were reported on Nicolosi and Mascalucia. A fall of ash and lapilli occurred in Catania. INGV reported At nightfall on February 11, 2021; strombolian activity continues at the south-eastern crater, sporadic sequences of explosions occur at the Voragine crater, and rarer but fairly powerful explosions at the Bocca Nuova crater.INGV reported that on February 5, that Strombolian activity continues at the Southeast Crater with frequency and intensity varying over time. On the morning of February 6, from around 04:30 UTC, an intensification of Strombolian activity at the mouths present in the eastern summit sector of the cone produced for about an hour a cloud of dilute ash which dispersed towards the 'Is. Four vents were active there almost simultaneously. Intense Strombolian activity also continues from several mouths present at the bottom of the Bocca Nuova crater, with a launch of equipment that also manages to exceed the edge of the crater. Strombolian and effusive activity was observed at La Voragine Crater, which feeds a small intracrateric lava flow towards New Bocca. Intra-crater explosive activity also continues at the Northeast Crater. INGV reported that on February 2nd, with a particular Strombolian activity at the SEC. The tremor remained in the upper zone; sulfur dioxide emissions were significant.he new scoria cone established in the eastern vent area of ​​the southeast crater at the top of Etna continues to grow - the comparison photographs below show the changes in 4 days, between January 29 and February 2, 2021. INGV reported that at the end of January, all the summit craters were showing activity. Strombolian activity of varying intensity and a weak emission of volcanic ash are observed at the southeast crater. An intracrateric strombolian activity with sporadic and diluted ash emissions and intracrateric effusive activity mark the Voragine crater. Strombolian intracrateric activity is noted at the Bocca Nuova crater and at the northeast crater, with occasional and diluted ash emissions. INGV reported that A slight eruptive activity continued at the south-eastern summit crater of Etna on the evening of January 30, 2021. A strong glow (caused by the reflection of the incandescence in the gas plume) was observed at the East vents, and Strombolian activity, accompanied by ballistic projections at the "saddle vent" (center) . As of the 28th of January, INGV reported that, from the surveillance cameras, the activity produced by the summit craters remains unchanged compared to the last update. In particular, Strombolian activity continues at the level of the Southeast crater fed by at least two explosive vents with deposition of products in the upper northeast flank of the cone and the intracrater Strombolian activity at the Northeast crater, Bocca Nuova and Voragine. INGV reported that a swarm of small earthquakes took place on January 24 under the eastern flank of Etna. Seismic activity started early on the morning Almost 50 earthquakes have been recorded with magnitude up to 2.3 and activity appears to be continuing. Most earthquakes have occurred at a depth of between 10-20 km and were located in a linear area with an east-west trend between the summit and the country of Jarre, mainly centered under the municipality of Sant 'Alfio.On the surface, Etna continues to be very active. When visibility permitted, strombolian-type lights and explosions could be seen through New SE Crater, Central Voragine Crater, and other possible air intakes. Analysis of images from INGV-OE video surveillance cameras on 20th of January showed that from around 5.30 p.m. GMT the flow produced by the lava overflow on the north side of the south-eastern crater is no longer supplied. and cools. Weak Strombolian activity continues at the southeast crater. As for the volcanic tremor, no substantial change is noted. The amplitude of the tremor remains high, although it does not reach alarm levels. The sources of the quake are located in the area of ​​the south-eastern crater, at a level of 2900-3000 m above sea level. In the last hours there is a decrease in infrasonic activity. INGV reported that a slight eruptive activity continued at the southeastern crater of Etna, on the evening of January 19, 2021, and from time to time, the crater of Voragine also appears active. From around 00:40 hours, a new lava overflow is observed on the north side of the South East Crater. In addition, moderate Strombolian activity is still present at the South East Crater. With regard to the volcanic tremor, we notice an increase in magnitude which reaches high values. The infrasonic activity is modest. Etna's GPS network data shows no significant variation. INGV reported that following a lava flow on January 17, starting at 19:15 GMT on 01/18/2021, a new lava overflow occurred at the southeastern crater of Etna. The front moves towards the Valle del Bove and reaches the 2900 m elevation. An intense Strombolian activity occurred on the part of the SEC. From 19:00 UTC, an increasing in the amplitude of the volcanic tremor was recorded, which is currently reaching high values. At the same time, there is also an increase in infrasound tremor. Etna's GPS network data does not show significant variations. The intense Strombolian activity produced by the southeast crater suddenly turned into a faint lava fountain reaching its peak at around 8:30 p.m. GMT. This activity generated a volcanic cloud which dispersed east-south-east and formed a deposit of volcanic ash on the eastern flanks of the volcano. In fact, during the explosive activity, a relapse of volcanic ash was reported in Fleri. Explosive activity has declined significantly from the start from around 9:00 p.m. GMT. As for the effusive activity, the CCTV cameras of the INGV-OE show, as previously communicated, two distinct lava flows: one goes towards the East, inside the Valle del Bove, the another to the north. From 21:00 UTC, a rapid decrease in volcanic tremor and infrasound signal was recorded. At around 9:30 p.m. UTC, both signals reached the levels that preceded the eruptive activity. Mount Etna, towering above Catania, Sicily's second largest city, has one of the world's longest documented records of historical volcanism, dating back to 1500 BCE. Historical lava flows of basaltic composition cover much of the surface of this massive volcano, whose edifice is the highest and most voluminous in Italy. The Mongibello the late Pleistocene and Holocene over an older shield volcano. The most prominent morphological feature of Etna is the Valle del Bove, a 5 x 10 km horseshoe-shaped caldera open to the east. Two styles of eruptive activity typically occur at Etna. Persistent explosive eruptions, sometimes with minor lava emissions, take place from one or more of the three prominent summit craters, the Central Crater, NE Crater, and SE Crater (the latter formed in 1978). Flank vents, typically with higher effusion rates, are less frequently active and originate from fissures that open progressively downward from near the summit (usually accompanied by strombolian eruptions at the upper end). Cinder cones are commonly constructed over the vents of lower-flank lava flows. Lava flows extend to the foot of the volcano on all sides and have reached the sea over a broad area on the SE flank. (webcam). . www.ct.ingv.it . Live cam Etna - Etna monitoring page - New Etna Southwest crater webcam

ITALY - Stromboli volcano (Eolian Islands)

September 12th, 2021

INGV reported that from 19:09 UTC / 21:09 loc. on September 11, Stromboli surveillance networks recorded an explosive event of greater than usual intensity. The event produced a significant emission of matter which passed the terrace of the crater as it rolled along the Sciara del Fuoco Due to the cloud cover, observations are very limited. The seismic network of the island of Stromboli recorded a seismic event, linked to an explosion, with an amplitude well above the average of the amplitudes of the events recorded recently. This seismic event was followed after about 1 minute by another event of high amplitude and others of lesser amplitude. After the first event, the seismic signal remained at high levels for about 3.5 minutes due to the rolling phenomena of the products emitted. At 19:13 (UTC), the average amplitude of the seismic signal returned to the medium-low levels that preceded the event. There are no significant changes in the number and magnitude of VLP events. At 23:02 (21:02 UTC), the settings return to normal activity. INGV reported that during 23-29 August activity at Stromboli was characterized by ongoing explosive activity from three vents in Area N (North Crater area) and six vents in Area C-S (South-Central Crater area). Explosions from the N1 vent (Area N) ejected lapilli and bombs 80 m high, and produced minor ash emissions. Explosions at N2 vents (Area N) averaged 4-5 events per hour and ejected material 80 m high. Explosions from the S1 and S2 vents in Area C-S were sporadic and occurred at a rate of 5-12 perhour; coarse material was ejected 120 m high. Gas emissions rose from the C vent.As of the 1st of August, INGV reported that At 20:01 UTC / 22:01 local, the surveillance network recorded a larger than usual explosive event in the area of ​​the terrace of the Central / Central-South crater of Stromboli. Analysis of the images indicated that the eruptive activity produced a significant emission of materials which reached heights of over 150 meters at the mouth and which dispersed beyond the crater terrace, affecting the area. of Pizzo and rolling along the Sciara del Fuoco. After the explosive event, no change in explosive activity was recorded. Seismically, the explosive event at 20:01 UTC is clearly visible at all seismic stations in Stromboli. Regarding the amplitude of the volcanic tremor, a sharp increase was observed from 19:50 UTC with a maximum peak on high values ​​around 20:00 UTC. Currently, the amplitude of the tremor has returned to medium-low values. Strain signals from GNSS and Stromboli clinometric networks show no significant variation associated with the explosive event. Previously, INGV reported that on July 28, 2021 at 14:47 UTC / 16:47 local, the Stromboli surveillance network recorded an explosive event energetically more intense than usual in the area of ​​the terrace of the Central / Central-South crater. The products of the explosive activity dispersed radially in the area of ​​the crater terrace with relapse along the Sciara del Fuoco and in the Pizzo area.INGV reported that the amplitude of the Stromboli volcanic tremor was observed from 12:30 UTC on July 14, with a maximum peak on medium-high values ​​around 13:00 UTC. At 13:19 UTC therean explosion occurred more intense than usual in the South Central area. The products felt along the Sciara del Fuoco for 3 minutes, and also reached the Pizzo area. From a seismic point of view, the explosive event of 13:19 UTC was associated with a seismic signal in the VLP band of 3.3 x10- 5 m (in displacement) and a soil deformation of about 0.6 microradians (recorded with the OHO tiltmeter ). INGV reported that during 28 June-4 July activity at Stromboli was characterized by ongoing explosive activity from three vents in Area N (North Crater area) and four vents in Area C-S (South-Central Crater area). Explosions from the N1 vent (Area N) ejected lapilli and bombs 150 m high, and produced minor ash emissions. Explosions at N2 vents (Area N) averaged 4-10 events per hour and ejected material 80 m high; spattering was intense on 28 June. Explosions from the S2 vents in Area C-S occurred at a rate of 5-8 events per hour and ejected coarse material more than 150 m high. INGV reported that a lava overflow, which began on 19th of June at 5:15 pm UTC, occurred in conjunction with explosive activity in the northern sector; the lava front cools and affects the upper part of the Sciara del Fuoco. The trend of the mean amplitude of the volcanic tremor does not show significant changes and the values ​​remain at the average level. GNSS networks and tiltmeters show no significant changes. The TDF incline station data is updated at 16:30 UTC. INGV reportedthat at 13:28:50 UTC on June 16, during an explosion at the northeast crater, at around 600 asl a landslide was triggered which caused a rolling of material which detached from the altitude previously mentioned. The phenomenon lasted a few minutes. Since 13:28 hours UTC, the INGV has recorded a seismic signal lasting approximately 2 minutes, associated with the event. At 4:46 p.m. UTC, a second landslide occurred along the Sciara del Fuoco at an altitude of about 450 m. Activity at the summit craters has not registered any significant changes from the previous press release. At 16:46 UTC, a low energy seismic signal was recorded, which may be associated with the landslide event observed by surveillance cameras. As of the 11th of June, INGV reported that at approximately 2:00 p.m. UTC, CCTV camera images from Stromboli show an increase in projection activity and explosions from active vents in the area. from the North crater. The coarse material produced covers the sides of the cone abundantly and rolls along the Sciara del Fuoco. From 14:40 UTC, an overflow of lava is also observed from the edge of the north crater area. The lava flow produced is in the upper sector of the Sciara del Fuoco. As of the 24th of May, INGV reported that the effusive activity started on May 19 from the area of ​​the northern crater of Stromboli continues with a lava front that remains at an average altitude in the Sciara del Fuoco, without reaching the coast. Bearings of large rocks are however observed. No specific variation in Strombolian activity is observed in the North and Central South crater areas. ; spattering activity continues. The evolution of the average amplitude of the tremor remains on average values ​​comparable to those of the previous press release. Soil deformation monitoring networks show no significant variation.On the afternoon of May 20, surveillance cameras show that the flow along Stromboli's Sciara del Fuoco is still fed. In addition, the projection / spattering activity continues in the North sector and sometimes also in the Center-South sector. This activity continued at the very start of the day on May 21. Discontinuous explosive episodes are observed at more intense times. The tremor tendency continues to show oscillations between medium-high and medium-low values. Regarding the magnitude of the explosion earthquakes, there is a slight upward trend compared to what had been observed previously. No significant change is observed in soil deformation signals from GNSS and clinometric networks. In the middle of the morning, the INGV reports that the flow along the Sciara del Fuoco is less fed and the most advanced front no longer reaches the coast, and is located at about 300 m altitude. The projection / spattering activity continues in the North and Center-South sectors. Discontinuous explosive episodes are observed at more intense times. The tremor trend showed mostly medium-low values. In the seismic trace, explosive events of modest amplitude are recognized. Signals from GNSS networks and clinometric soil deformation monitoring do not show significant changes. INGV reported that at 12:47 UTC on May 19, 2021, an increase in explosive activity was observed from the area of ​​the North Crater of Stromboli which at 12:51 a.m. produced a pyroclastic flow which reached the coast, then developed over the sea for 1 km and produced an ash cloud which reached an estimated height of about 1.5 to 2 km above sea level . From 12:47 UTC, an increase in the seismic trace was recorded which may be associated with the dynamics of the pyroclastic flow along the Sciara del Fuoco. Further pyroclastic flows of lesser intensity occurred from 1:02 p.m. UT, producing modest clouds of ash and warm coarse matter reaching the shore. The phenomenon is still ongoing. A series of events (at 12:51, 13:04, 13:09, 13:13 UTC, etc.) are clearly visible at the Ginostra ISTR seismic station and at STR4 station. INGV reported that during 19-25 April activity at Stromboli was characterized by ongoing explosive activity from Area N (North Crater area) and in Area C-S (South-Central Crater area), though sometime weather conditions prevented visual observations. Explosions from two vents in the N1 vent (Area N) ejected lapilli and bombs 250 m high, and produced minor ash emissions. Explosions at N2 vents (Area N) averaged 11-14 events per hour. Periods of visible spattering were most notable on 24 April. Explosions from at least three vents in Area C-S occurred at a rate of 1-5 events per hour and ejected coarse material more than 250 m high. As of the 1st of March, INGV reported that analysis of Stromboli camera footage revealed explosive footage in the North Zone, which began with three events of lesser intensity at 1:32:50, 1:33:00 and 1:33:10 UTC, respectively. After approximately ten seconds, a major explosion occurred at 1:33:30 UTC lasting approximately 10 seconds and ended at 1:34:00 UTC. This latter activity produced a fall of coarse material along the Sciara del Fuoco and part of the material fell in the direction of Pizzo.From the seismic point of view, after the phase of increasing the amplitude of the tremor, which followed the explosive sequence, the values ​​returned to the standard around 01:37 UTC approximately. No significant change is observed in the frequency of occurrence of explosive events. INGV and LGS reported that at 00:00 UTC on January 25th, 2021, the Stromboli monitoring network recorded a tremor peak which reached very high values. This peak was in relation with the start of a new lava overflow which generated a clear soil deformation of about 0.35 microradians. Seismic tremor exhausted after about 3 hours and was associated with a increased material turnover figures in the currently high Fire Sciara (21 n / day). Stromboli activity continues to be characterized by an intense phase of spattering and strong explosions at the NE crater, while explosive activity in the SW and Central sector is weak or absent. Since the last update of January 23, the tremor remains on ALTI values ​​with a slight upward trend. The VLP seismicity is shallow stable and indicates a very shallow magmatic column. The SO2 and CO2 fluxes maintain a weak but progressive tendency to increase, which has persisted for several weeks, indicative of a recharge of the superficial magmatic system. As of the 24th of January, INGV eported that at 4:57 p.m. GMT there was an explosion that was energetically more intense than ordinary activity in Stromboli, but could not be classified as a major explosion. The analysis of the INGV-OE surveillance cameras also revealed that the products generated by this explosion fell along the Sciara del Fuoco. Further lava overflow from the North Crater area is also visible from around 7:05 p.m. GMT. The seismic signals do not show any significant change from the previous update. As of the 23rd of January, INGV reported a slow decrease in effusive activity due to the lava overflow in the area of ​​the north crater. The lava was no longer supplied and is being cooled. Also in the area of ​​the North crater, a spattering activity was observed. There were also no particular variations in the explosive strombolian activity of the north and central south crater areas. On the morning of January 23, 2021, the amplitude of the tremor slowly decreased. The amplitude of explosive events remained low and the frequency was also similar to the previous period, with an event every 5-10 minutes. Stromboli returned to its normal activity patrameters on January 23 at 4:24 p.m. UTC. INGV reported that from 11:45 hours GMT on January 22, 2021, on the images of the surveillance cameras of the INGV-OE show a lava overflow of the crater zone North of Stromboli. At 16:14 UTC that the lava flow produced by the overflow formed at the North crater area continues to be well fed, and the front is located at about 600 m. The incandescent blocks that stand out from the front roll along the Sciarra del Fuoco, reaching the coast line. In addition, there is ordinary Strombolian activity from both North and South crater areas. INGV reported that since 9:45 hours GMT on January 18, 2021; INGV-OE surveillance cameras show an overflow of lava produced by mouth N2 of the northern crater zone of Stromboli. This overflow, preceded at night by spattering activity, was well fed between 10:10 GMT and 11:30 GMT approximately, reaching a height of about 700 m above sea level. Analysis of the footage from the INGV's video surveillance cameras also showed glowing blocks that stood out from the front and rolled along the Sciara del Fuoco. At 12.58 UTC, this overflow is no longer supplied but a thermal anomaly visible by the video surveillance cameras of the INGV-OE remains. In addition, there is ordinary Strombolian activity from both North and South crater areas. From 14:10 GMT the images from the CCTV cameras of the INGV-OE show a projection activity present in the area of ​​the Center-South crateric zone which produces incandescent blocks which roll episodically along the Sciara del Fuoco. The projection activity continued in the central-south crater area until the evening, with incandescent boulder falls rolling into the Sciara del Fuoco. Previous news 2020 - LGS reported that A new major explosion occurred on 21st of Novembe at 9pm UTC. INGV reported that on November 16th at 09:17:50 UTC, an explosion, considered as major, was observed at Stromboli, in the center-south zone, accompanied by a plume ash about 1,000 meters high. A small pyroclastic flow rolled down the Scira del Fuoco to sea level, where it continued for some 200 meters. Shortly after the eruption, ashes and lapilli fell; the color of the particles, a few mm., brown to red-brown (old materials present in the vent), however a small amount of lighter pumice was also present in the ash (small fraction of fresh magma which has produces the eruption). From the seismic point of view, the phenomenon, clearly visible on all the seismic stations of Stromboli, was characterized by a sequence of explosive events which started at 9:17 (UTC) for a duration of 4 minutes. Regarding the magnitude of the volcanic earthquake there are no significant variations. INGV reporte that at 8:04:20 UTC / 9:04 p.m. local on November 10, a major explosion occurred at Stromboli from the south-central crater terrace.The event lasted about 6 minutes and produced an eruption column that rose higher than the Pizzo [sopra la Fossa]. The products of the explosion were mainly distributed on the Sciara del Fuoco and caused a turnover of pyroclastic products, while a small proportion fell on the Pizzo sopra la Fossa. The event lasted until 20:10:00 UTC, with at least three explosions of minor intensity than the Big Blast.In terms of seismicity, the event, which was visible on all seismic stations in Stromboli, was characterized by a sequence of explosive events that started at 20:03.50 (UTC). Surveillance networks indicate that at 11:11 p.m. local time (22:11 UTC), the parameters of the eruptive activity returned to normal levels. INGV reported that during 19-25 October activity at Stromboli was characterized by ongoing explosive activity from Area N (north crater area) and in Area C-S (south-central crater area). Explosions from two vents at the N1 vent (Area N) ejected lapilli and bombs 80-150 m high, and produced ash emissions. Explosions at two N2 vents ejected a mix of coarse and fine material at a frequency of 5-10 events per hour. Explosions from vents in Area C-S also ejected both coarse and fine material 250 m high at a frequency of 1-3 events per hour. Following observations made by INGV-OE staff during the Stromboli inspection on August 22, the morpho-structural arrangement of the crater terrace consisted of three eruptive vents located in the area of ​​the North crater and by at least three eruptive vents located in the Center-South crater area. All the vents are placed inside the epression which occupies the crater terrace. In the area of ​​the north crater, the N1 crater, with three emission points, produced explosions of low to high intensity (the products of some explosions exceeded 200 m in height) of coarse materials (lapilli and bombs) which are fallen profusely with a radial distribution. The mouth N2 showed a low intensity explosive activity (less than 80 m in height) of coarse material. The average frequency of the explosions varied from 3 to 10 events / h. In the Central-south zone, the explosions were mainly of fine materials, mixed with coarser ones, of medium-high intensity (the products emitted often exceeded 250 m in height). The frequency of the explosions varied from 2 to 8 events / h. INGV and LGS published details about 19 July explosive activity : the sequence of explosions was characterized by 4 explosions, the largest of which resulted in the fall of lava material along the Sciarra of Fire and Lace which then slipped into the sea. The explosion produced a 1 km high column of ash and the ejection of large material (>50 cm). A small amount of the ejected material also reached Smooth and Rocks. The explosive sequence was just preceded by an increase in the average amplitude of the volcanic tremor that reached its peak at the major explosion and then returned to normal levels. Fortunately there was no damage or injuries. From 10 o'clock, the volcano has returned to normal activity. Previous news - INGV surveillance network recorded on July 19th at 0300 UTC a major explosion. The products of the explosion were distributed throughout the crater terrace and on the Sciara del Fuoco. From the seismic point of view, the phenomenon was characterized by a brief sequence of explosions and an increasing in the amplitude of the tremor up to 3:10 UTC. INGV reported that during 6-12 July activity at Stromboli was characterized by ongoing explosive activity mainly from three vents in Area N (north crater area) and three vents in Area C-S (south-central crater area). Moderate explosions from both areas ejected lapilli, bombs, and ash with decreasing frequency and intensity through the week. INGV reported that during the past week, normal Strombolian-type explosive activity was observed accompanied by degassing and spattering activities. The total hourly frequency of explosions fluctuated between average values ​​(10 events / h on July 3) and high values ​​(21 events / h on June 29). The explosive activity was mainly produced by 3 eruptive vents located in the area of ​​the North crater and by 3 eruptive vents located in the area of ​​the Center-South crater. All the vents are placed inside the depression which occupies the crater terrace. Previously, INGV reported that during the week from May 1st to May 7th, 2020, the explosive activity remained stable at a low level and was mainly localized in the SW crater until May 1, then decreased slightly and mainly moved towards the central crater. This activity is accompanied by a slight swelling (max 40 mbar) also located in the C-SO secctor. The number of VLP events stable at high values ​​until May 5 then increased to average values ​​(between 10.5 and 10.9 events / hour). The seismic tremor is stable on the average values. INGV reported that volcanic activity of Stromboli was characterized between 17 and 23 April by Strombolian explosions rich in pyroclastic material located mainly in the NE crater and continuous degassing in the C / SW crater. This activity is associated with a high to very high number of VLP earthquakes and acoustic pressures with variable values ​​between between medium and high (max 1.08 bar).INGV and LGS reported that on April 14, at 4:12 UYC, the LGS surveillance network recorded a deflation of the ground, presenting all the typical characteristics of the lava overflows recorded in 2014 and March 31, 2020. The webcams did not corroborated the effusion, which is most likely intracratric, and concerned small volumes. The INGV OE reported on April 15 from 7:16 UTC a lava overflow from the north crater of the Stromboli terrace. Glowing blocks detach from the lava front and roll into the Sciara del Fuoco. A VLP seismic signal is observed and reported by the LGS, comparable in amplitude and frequency to the signal recorded on March 31 which accompanied a small lava overflow. The signal is associated with a fall of blocks of approximately 20 minutes (7:16 a.m. - 8:00 a.m. UTC). The depth of the VLP seismic source is compatible with a magmatic column which has been very shallow for weeks. The VLP seismic signals remained at very high values. Explosive activity at the NE crater, increased over the past week, has rapidly decreased overnight, starting at 23:00 UTC yesterday. The thermal anomalies of April 14 are between VRP 10 and 14 MW, those of April 15, between 21 and 73 MW. Previously, INGV informed that the surveillance networks recorded from 23:40 hours UTC approximately on March 30, 2020, a lava overflow from the crater terrace of Stromboli; lava reached the coast line at approximately 1:50 a.m. UTC on March 31. At the same time as volcanic phenomenology, there is a seismic signal associated with episodes of rolling incandescent blocks along the Sciara del Fuoco and small landslides that generate clouds of dust. LGS of the Department of Earth sciences of the University of Florence recorded an increase in the seismic tremor at Stromboli, accompanied by events of roll (such as "rockfall"), the longest of which (approximately 3 minutes) took place on March 29 at 16:57 UTC. This phase of increase in tremors is associated with an overflow, that is to say an overflow of lava, from the NE crater as in the images of the Labronzo camera and caused the collapse of small portions of the edge of the crater. At the moment, there is no significant change in the other parameters monitored. This activity is still ongoing. INGV reported that during the period from March 16 to 22, 2020, the explosive activity was mainly produced by at least 3 (three) eruptive vents located in the area of ​​the North crater and at least 3 (three) eruptive vents located in the area of Center-South crater. All the vents are placed inside the depression which occupies the crater terrace.In the northern zone, the explosions were mainly of low to low intensity (less than 80 m high) to high (more than 150 m high) of coarse materials (lapilli and bombs); the abundant fallout has covered the outer slopes of the area overlooking the Sciara del fuoco and the blocks are rolled until they reach the coast line. The INGV specifies that on March 19 from 2:50 p.m. UTC and until 4:30 p.m. UTC, intense spattering activity animated one of the north mouths overlooking the Sciara del fuoco, and gave birth to a modest rheomorphic flow in the upper part of the Sciara for a few hundred meters. the average frequency of explosions in the North zone was variable, between 7 and 9 events / h. The explosive activity of the Center-South zone caused explosions of mainly fine materials (ashes) mixed with large grains of medium to high intensity (150-250 m in height). The frequency of explosions from the CS area was variable, between 5 and 16 events / h. INGV reported from 9th to 15th of March, the explosive activity of Stromboli was mainly produced by at least 3 eruptive vents located in the area of ​​the North crater and by at least 3 eruptive vents located in the area of ​​the Center-South crater. All the mouths are placed inside the depression which occupies the crater terrace. In the North zone, the explosions were mainly of variable intensity, from low (less than 80 m high) to high (greater than 150 m high) of coarse materials (lapilli and bombs). in numerous explosions, abundant fallout products covered the outer slopes of the area overlooking the Sciara del fuoco and the blocks rolled to the coast. The average frequency of explosions in zone N varied between 8 and 11 events / h. The explosive activity of the Center-South zone produced explosions of mainly fine materials (ash) sometimes mixed with coarse medium intensity (less than 150 m high) sometimes high (the products exceeded 250 m in height). The frequency of explosions in the CS zone varied between 6 and 14 events / h. INGV reported that between February 24 and March 1, 2020, an explosive activity of normal Strombolian type continued accompanied by degassing activity; the hourly rate of explosions fluctuated between average values ​​(11 / h on 26.02) and high average values ​​(17 / h on 24.02). At least three vents, in the area of ​​the North crater, expelled bombs and lapilli, which covered the outer slopes of the area overlooking the Sciara del Fuoco, where blocks rolled to the sea. Three vents, in the center-south zone, were the site of mainly fine material explosions.All the vents are located in the depression of the terrace. Normal activity was observed during period from 17th to 23rd of February with explosive strombolian type accompanied by degassing. The hourly rate of explosions fluctuated between average values ​​(12 events / h on February 21) and high values ​​(21 events / h on day February 17). The intensity of the explosions was mainly medium to high in the region of the North Crater and medium in the area of ​​the Center-South crater. In the morning of February 21 and 22, 2020, INGV-OE staff carried out an inspection to monitor the explosive activity and the orphological changes of the crater terrace. INGV reported that a normal activity was observed during the period from February 10th to 16th, 2020. Explosive strombolian type, accompanied by degassing; the hourly rate of explosions fluctuated between average values ​​(12 events / h on February 11) and average-high values ​​(18 events / h on February 16). The intensity of the explosions was mainly medium-low in the region of the North crater and medium-high in the zone of the Center-South crater. INGV reported that as of the 3rd of February from around 08:20 h UTC, via surveillance cameras, a modest overflow was observed from the northern area of ​​the Stromboli crater terrace, which is currently confined to the summit area. The flow front disintegrates on steep slopes and causes the rolling of material along the Sciara del Fuoco. The magnitude of the volcanic tremor does not show significant associated variations.The daily number of VLP earthquakes is high (18 episodes / hour). The thermal activity recovered from the cameras is average. The flow of SO2 results in low values ​​(59 t / d), like the flow of CO2 (121 t / d). The explosive activity is centered on the NE crater sector, with the emission of gas, ash and slag. The Central and SW crater sectors are characterized by continuous degassing. INGV reported a small lava flow on January 18 from 9:36 pm UTC located in the northern area of ​​the Stromboli crater terrace; it remains confined in the summit area, and following an overflow at the very beginning of the day on January 19, materials roll in the Sciara del Fuoco. This activity did not last and is considered to have ended in the report from 19.01 at 10:03 UTC. Normal seismicity persists and the deformations of the soil do not show significant variations. News 2019 - .INGV reported that activity of Stromboli has increased slightly in recent days. The number of VLP earthquakes remains high, with 19.4 episodes per hour on 28.12 - 18.8 on 29.12 - and 20.4 on 30.12 (standard values: 5-12 / h.) The amplitude of the tremor is middle, and the exit speed of the pyroclasts is around 24 m / s, average, and estimated by the images of thermal cameras. Tiltmeters do not show significant deformation. Thermal activity remains average. The flow of sulfur dioxide in the NE sector of the terrace fluctuates between 115 and 20 tonnes / day. According to the L.G.S., volcanic activity remain stable at an average level. INGV reported that a normal activity was observed during the period from December 16 to 22, 2019, of explosive Strombolian type, accompanied by degassing and splashing activities; the hourly frequency of explosions fluctuated between average values ​​(13 events / h on December 17) and very high values ​​(32 events / h on December 20). The intensity of the explosions was mainly at a medium-low level in the area of ​​the North crater and medium-high in the area of ​​the Center-South crater. The seismological parameters do not show significant variations.No change to report on the deformation side.SO2 flux is at medium-high level The isotopic ratios of dissolved helium in the thermal layer remain unchanged at the mid-low values.As of the 23rd of December INGV reported that during the past 24 hours, explosive activity occurred from the crater sectors southwest and northeast, with about twenty explosions per hour, very noisy (sound pressure of more than 5.4 bar compared to normal around 1 bar). The seismic tremor is high.INGV reported that during the week of December 2 to 8 eruptive activity was characterized by explosive Strombolian explosions, at an average rate of 12 hourly episodes (06.12) to 24 hourly episodes (08.12), accompanied by degassing and spattering located in the north and south-central crater areas. Seismicity and deformation do not showed significant variations. The sulfur dioxide flux remained at a medium-high level. INGV reported that during 25 November-1 December activity at Stromboli was characterized by ongoing explosive activity mainly from three vents in Area N (north crater area) and at least three vents in Area C-S (south central crater area). Low-to-medium-intensity explosions from Area N occurred at a rate of 7-11 events per hour and ejected lapilli and bombs 80-150 m above the vents. Ejected tephra fell onto the flanks and some blocks rolled a few hundred meters along the Sciara del Fuoco. Medium-intensity explosions from Area C-S occurred at a rate of 4-8 events per hour and ejected coarse material to heights less than150 m above the vents. Material was deposited along the upper parts of the Sciara del Fuoco. INGV reported that a normal Strombolian explosive activity accompanied by degassing continued; the frequency of explosions remains between medium to high with 16 to 23 episodes per hour. The parameters of seismicity and deformation do not show significant variations. The flow of SO2 remains at an average level. The Civil Protection has raised the alert level from orange to yellow on November 7, without changes in the prohibited navigation zone in front of the Sciara del Fuoco, nor concerning the prohibition of access above 290 meters. As of the 24th of September, INGV reported that normal Strombolian explosive activity and degassing continued. In the northern crater zone, 5-6 explosions per hour, with a peak at 9 episodes, between 80 and 150 meters high, produced coarse materials, lapilli and bombs, which rolled into the Sciara del Fuoco.Activity in the south-central zone was characterized by an average explosive of 11 episodes per hour, with peaks at 15 episodes, and an expulsion at heights of up to 200 meters of fine to coarse material. Seismology and deformation do not show significant changes and the sulfur dioxide flux remains at an average level. INGV reported that the typical strombolian activity continued and affected the north and south-central of the crater terrace.Drone surveys, conducted from 11 to 13 September, identify at least seven active mouths in the northern zone and eight in the central-south zone. The number of VLP earthquakes was 31 episodes / hour on average. There was no significant variation in soil deformation. Degassing was characterized by a characteristic low-average level. INGV reported that, during the flight over August 30 by the INGV staff and through camera image analysis, it was observed that the south-central lava flow had ceased. It started around 01:50 UTC on August 30th. As a result, the lava field gradually calms down. The flow of SO2 detected by the FLAME network from 09:00 UTC showed a moderate decrease placing the degassing regime at a medium-high level. The average amplitude of the volcanic tremor over the past few hours has shown a gradual decrease, reaching values ​​comparable to those observed before the explosive sequence described in update release number 32. Currently, the amplitude shows fluctuations around mid-high values. On 29 August 2019 at 20:43:41 UTC, the geophysical monitoring network recorded a new powerful explosive event at Stromboli , associated with geophysical parameters (seismic, ground deformation and sound pressure) that are higher than the ordinary explosive activity .The seismic event (speed of 4.0 x 10-4 m / s and displacement of 4.5 x 10-5 m) exceeds the values ​​of ordinary activity The infrasonic network indicates that the explosion generated pressures of about 250 Pa, at a distance of 450 m, and located the explosive event in the area in relation to the Central / SW crater. This event was accompanied by a strong signal of soil deformation (1.17 μrad in the OHO inclinometer of Rina Grande), preceded by about 2 minutes of a net swelling of the soil. Following the explosion, there is an increase in seismic tremor to very high values ​​and an increase in the lava flow from the crater NE crater of Sciara del Fuoco. As of the 28th of August a second paroxysmal explosions occurred at Stromboli. . Similar to that of July 3, 2019, although less strong. INGV noted that Stromboli has already experienced such explosions separated by several years, or decades, but never in a lapse of so short time. This strong explosion occurred at 10:17 UTC without any particular changes in the monitored parameter levels before and after the episode, which remained high to very high. Only an increase in SO2 flux (264 t / d) is reported from high to very high values ​​that preceded the paroxysmal event of a few hours. A strong deformation of the ground was observed ( inflation) has been recorded onlyl five minutes before the explosion. The MODIS image at around 10.15am (UTC) measured a very high thermal anomaly of 3.799 MW, equivalent to effusive flows of about 15 m3 / s, an order of magnitude higher than the effusive flows recorded from the July 3, 2019 (0.3-3 m3 / s). The paroxysm generated an eruptive column of 2,000 meters in height and the ejection of large ballistic material up to 200-300 meters from the coast; a pyroclastic flow occurred in the central part of the Sciara del Fuoco and spread over several hundred meters on the surface of the sea, creating a small tsunami; according to the images of the webcams and the weather, its approximate speed was 180 km / h. Then, INGV reported that strombolian activity on the crater terrace was slightly down. An aerial observation from an helicopter of the coastguards of Catania on August 23, showed the opening of many igneous vents in this area. INGV reported that from 18 August at 0h35 UTC, the thermal camera of Punta Dei Corvi / on Stromboli, showed the resumption of effusive activity from a probably ephemeral vent at altitude 550-600 meters, above the area of ​​the central crater . The products issued run along the Sciara del Fuoco. A Modis image at 1:50 UTC records a thermal anomaly of 125 MW to 148 MW, compatible with this activity.The explosive activity continues without significant modification. INGV reported that Stromboli's crater terrace activity was analyzed during 5-11 August through webcam views, and field inspections during 7-8 August. At least nine vents in Area N (north crater area, NCA) were active on 7 August, three of which had well-formed spatter cones, with Strombolian activity ejecting material 150 m high. A large scoria cone in Area C-S (South Central crater area) jetted material 200 m high. Lava from Area C-S vents continued to travel down the upper part of the Sciara del Fuoco, reaching 500-600 m elevation. INGV and LGS reported that the explosive activity of Stromboli has increased since the beginning of August at the level of the central craters / south-west and the cones of the NE sector, with explosions rich in ash and scoria at 200 meters height above the terrace; these materials accumulate in the crater zone and on the Sciara del Fuoco, where they produce frequent rock slide events. The effusive activity in the SW sector shows an increase in the supply rate which has now reached values ​​of about 1.2 m³ / s, and corresponds to an increase in SO2 levels. All measured parameters suggest a new phase of feed rate increase and the arrival at the surface of a gas-rich magma coinciding with phases of sharp increases in both peak explosive activity and ratios. effusion. INGV and LGS reported that the volcano is still showing a high explosive activity, mainly in central / southwest and northeast craters, with ash-rich explosions and ejection of centimeter sized projectiles. An active overflow of lava marks the upper area of ​​the Sciara del Fuoco, visible on July 30 at 12:49 local / 10:49 UTC on the thermal camera on the northern edge of the Sciara at 400 m. altitude, and from the ROC camera at 11:52.The parameters are consistent with the explosive and effusive activity: oscillations of the tremor at high values, an average of 28 VLP earthquakes / hour, thermal anomalies between 202 MW and 49 MW, tendency of the flow of sulfur dioxide to the increase. Thermal data from satellites and cameras recorded during the last 12 hours on July 17 indicate an increase in the effusive activity of the south-west crater of Stromboli. MODIS images acquired over the last 12 hours, in favorable meteorological and satellite conditions, show elevated thermal anomalies up to 744 MW (01:50 UTC) which correspond to an increase in effusive activity, with effusive velocities (TADR) estimated at about 2 m3 / s (+/- 0.6 m3 / s).The increase in thermal luminance measured by MODIS is confirmed by the SENTINEL image acquired at 10:00 UTC on 17/07/2019, which shows a clear increase in the lava front surface. From the images, it is possible to estimate a maximum stream length of about 600 m and a maximum width of 80 m. The lava front is installed at an altitude of about 300 m. In line with the increase in effusion activity, there is a further increase in the SO2 flux measured by the UV Roccette camera which attests to a very high level. This increase is visible on the images of the Ginostra thermal camera, showing a well-fed and organized flow in several branches.The LGS reported for July 14th and 15th an increasing in thermal activity which corresponds to an increase in effusive activity: from 276 MW at 21:05 UTC on the 14th, it has risen to 347 MW at 1:20 UTCINGV reported that a powerful explosive and effusive activity continues in Stromboli. This magmatic feed continues at a very shallow level and fills the crater terrace which is now much wider than the geometry preceding the explosion of July 3, 2019. Due to the absence of parts of the edges of the crater terrace, the Magma escapes in recent days through a series of overflows both in the western portion (Ginostra side) and in the central area of ​​the Sciara del Fuoco (eastern crater side).Since 6 am UTC on July 15, there has been characterized by an increasing of the release of gas from the NE portion of the crater terrace, with SO2 flux reaching very high values ​​(254 t / d, at 9:45 UTC)On the evening of July 12, the northern crater area was more active, with a series of overflows in the central part of the Sciara del Fuoco, while the emission of a modest lava flow continued from the center-south crater zone. According to the INGV's surveillance cameras and field observations, strombolian this activity continued from the north and south-central zones of the terrace. Lava flows are emitted from the central-south zone and reach the mid-slope in the Sciara del Fuoco. The July 12 Sentinel 2 image shows hot spots on the terrace and in the Sciara del Fuoco. LGS inspection carried out in Punta dei Corvi at 15:30 on 10 July with the help of the thermal camera has allowed to observe several active lava overflows at the summit, from which two flows start along the central and south part of Sciara del Fuoco.The southern front rises to about 600 m., while the front of the central part of the Sciara reaches about 400 m. altitude. These flows bring hot materials to the bottom of the slope where they accumulate as small deltas. INGV reported that from 8 pm local time on July 8, 2019, an overflow of lava from the south-west crater of Stromboli generated a lava flow of up to 500 m along the Sciara del Fuoco. The overflow is also confirmed by the analysis of the images of the thermal camera of Punta Dei Corvi, restored after the paroxysmal explosion of July 3th, 2019.A thermal anomaly of 125 MW recorded at 20:50 UTC on 08.07, and 211 MW at 01h UTC, by Mirova This heat flux value is in agreement with the current lava overflow, indicating an effusion rate of about 0.5 mc /s (LGS - 08.07.2019). INGV reported that a paroxysmal eruption occurred on 3 July 2019 – at 16:46 Local Time (UTC+2). The eruptive column, at least 2-km-high, produced severe ash and lapilli fall-out on the volcano flanks, affecting especially the village of Ginostra located in the eastern part of the island. In particular, two main explosive events were distinguished at 14:46:10 H and 14:46:40 H UTC, respectively. The sequence was preceded at 14:44 h UTC by lava overflows of all the active vents of the crater terrace towards the Sciara del Fuoco. One person died during hiking on the trail “Punta del Corvo” downward to Ginostra and several other persons would be injured. The fall-out has also triggered several fires in various sectors of the upper/intermediate volcano flank .After the paroxysm of 14:46 UTC, no other high intensity explosive event was observed. The seismic route returned to the levels preceding the explosive sequence and, thanks to the surveillance cameras, it was possible to observe normal strombolian activity and cooling of the relapsed material deposited along the Sciara del Fuoco, which produces continuous rolling towards the coast. INGV reported that a major eruption occurred on 25th of June at about 11 PM involving the central Southern area of the terrace.Pyroclastics material has fallen onto the Sciara del Fuoco and inside the crater terrace. The seismic signal associated at this event lasted 4 mn. After this strong eruption, no further explosive event occurred. INGV reported that during 3 and 6-9 June activity at Stromboli was characterized by ongoing Strombolian explosions and degassing from multiple vents within the crater terrace. Explosions from two vents (N1 and N2) in Area N (north crater area, NCA) occurred at a rate of 1-4 per hour, ejecting material 80 m high and producing ash plumes. Explosions from two vents (S1 and S2) in Area C-S (South Central crater area) occurred at a rate of 3-8 per hour, ejecting material 80-150 m high. Gas plumes rose from vent INGV reported that during 15-21 April activity at Stromboli was characterized by ongoing Strombolian activity and degassing from multiple vents within the crater terrace, though activity intensified on 19 April. Explosions originated at a rate of 3-16 per hour mainly from two vents (N1 and N2) in Area N (north crater area, NCA) and at least four vents (including C, S1, and S2) in Area C-S (South Central crater area). Explosions from the N1 vent ejected lapilli and bombs mixed with ash no more than 150 m high. Low-intensity explosions at the N2 vent ejected tephra to heights under 80 m. Vent C produced gas emissions. Incandescent material from S1 jetted as high as 150 m above the crater. Explosions from two vents at S2 ejected tephra more than 150 m high. Spectacular incandescent nighttime explosions at Stromboli volcano have long attracted visitors to the "Lighthouse of the Mediterranean."Stromboli, the NE-most of the Aeolian Islands, has lent its name to the frequent mild explosive activity that has characterized its eruptions throughout historical time. The small, 926-m-high island of Stromboli is the emergent summit of a volcano that grew in two main eruptive cycles, the last of which formed the western portion of the island. The active summit vents are located at the head of the Sciara del Fuoco, a horseshoe-shaped scarp formed as a result of slope failure that extends to below sea level and funnels pyroclastic ejecta and lava flows to the NW. Essentially continuous mild Strombolian explosions, sometimes accompanied by lava flows, have been recorded at Stromboli since Roman times.www.ct.ingv.it - Live webcam

*****************************************************************************************************************************************************************************************************

Iceland - Reykjanes peninsula- Fagradalsfjall eruption

September 17th, 2021

IMO reported that lava flow of the the eruption in Geldingadalur increased on September 16, 2021. a first appearance of incandescence at the re-entry of the flows in Nátthaga is vsible on the webcam around 19:50. Around midnight, the lava flows again, very fluid, over the foothills of the Nátthaga Valley, similar to that of September 15. The turning point of the Fagradalsfjall eruption today is that the eruption has become the longest eruption in Iceland in the 21st century, with 181 days elapsed since the eruption began on March 19.IMO reported that after a long period of heavy weather where fog and low clouds prevented aerial photography over the Fagradalsfjall eruption sites, new measurements were finally obtained on September 9 (transmitted September 13). The measurements show that the average lava flow over the last 32 days is 8.5 m³ / s. The fairly powerful eruption was active about half the time. The average flow at the time of the eruption could therefore have been about twice as high. The lava emitted has a volume of 143 million cubic meters and the covered area of ​​4.6 square kilometers. During the month following the last investigation, lava flowed in the western part of Meradalur, Syðri Meradalur and the northern part of Geldingadalur and Nátthaga. The area has increased very little, as the lava flows mainly to the surface, and has not reached the edge of the pre-existing field. The tremor intensified in Fagradalsfjall on September 11 at around 5 a.m., after a 9 day break. The activity suddenly increased and continued to grow. At around 10 a.m. this September 11, lava flow through an orifice at the base of the west wall of the crater and along the slope, in addition to bubbling in the active vent in depth. Later, lava was also observed in the Geldingadalir lava field. A lava pond has formed there, and several spattering spots are observed on its surface. Are these new vents or cracks. ? It is more likely the gas in the lava flow that finds the leak points, since most of the pond has a solidified surface. On August 31, the lava emitted by vent # 5 flowed mainly into Meradalur to the east, but also to Geldingadalur to the south, and Upper Meradalur to the southeast.The activity remains fluctuating as shown by the variations of the tremor. As of the 29th of August effusive activity continued. As of the 26th of August, lava from the Fagradalsfjall eruption cascades again into the Nátthaga Valley. The eruption continues with an alternation of active phases and pauses, as illustrated by the outline of the eruptive tremor. Considering the unchanged flow, it will probably take about two weeks to fill Nátthaga. Then it will take some time to fill the square on Suðurstrandavegur. IMO reported that around 6 p.m. on August 21, 2021, a breach opened in the southern lip of the active crater. Lava quickly rushed through this opening and began to flow to the south. Lava is now starting to descend into Nátthaga from Meradalur. This is the first time that a visible flow has descended into the valley since the end of June. The eruption continues with views of the active cone splashing with lava the NE rim of the crater on August 19, and showing flows entering Geldingadalur, Meradalur & SyðriMeradalur, in keeping with the style of building a lava shieldThe new vent, which opened in Geldingadalur on August 9, was not confirmed to be separated from the neighboring main vent until about a week later. The new cone grew rapidly due to the intense spattering , and by August 17 it was at about the same height as the main crater. Spattering from the new vent was at times ejected higher than spatter from the main vent.Local information reported that it seems that a new small spatter cone has started to develop on the side of the eruptive center, with an independent and powerful crater. Observers dated its opening the same day the Gónhóll fissures were discovered and may have appeared. The thermal anomalies noted by Mirova were very high on August 16, with a maximum at VRP 5262 MW at 2:35 p.m. As of the 13th of August the eruption continues at Fagradalsfjall according to a now fluctuating pattern, as evidenced by the variations of the tremor. Lava flows into Meradalur, first channeled then spreading out into deltas. Video footage from August 13 shows lava overlapping the crater in waves of multiple flows towards Meradalur; a piece of the crater wall was washed away by these lava waves. The eruption paused on August 15 around 5:35 am, and in less than a minute, according to webcams ... but seems to continue according to a receding pattern. IMO reported that a new vent / also referred as "a hole" opened at the edge of the active Icelandic / Fagradalsfjall eruption crater on August 9 at 10:06 am local time, and both are now producing lava from the same source. Volcanic tremors at the site began to increase around 3:00 a.m. this morning, continuing the eruption's fluctuating activity pattern. This new vent was no longer productive at 2:40 p.m. local time.The nocturnal activity was important; many tongues of lava have been fed and a torrent of lava is pouring down into Meradalur, while some of the lava flows into Geldingadalur. measurements of the sitte of Fagradalsfjall were made on the afternoon of Sunday August 8, when aerial photographs were taken with the Hasselblad camera of the Institute of Natural History from the plane of the Fisfélag.Terrestrial models were made based on these measurements and they were compared to older data.Measurements show that the lava flow over the past 12 days has averaged 9.3 m³ / s. When the measurements taken in July are compared, there is strong evidence that the flow was lower in the first half of July, 7-9 m³ / s, but then came a peak that lasted 8-10 days, where the flow could have reached 17-18 m³ / s on average. The uncertainty of these figures is considerable. The lava emitted now has a volume of 119 million cubic meters and its area is 4.4 square kilometers. No lava has flowed in Geldingadalur, Nátthaga and Syðri Meradalir for over a month. This situation has just changed: a small lava flow crossed the crater wall to the south on the night of August 9, to Geldingadalur.New cracks are now visible in Gónhóll near the Fagradalsfjall volcanoes and they appear to have formed in the past two weeks. The eruption continues after a sudden drop in the tremor during the day of August 7, it rose again in the early evening, and the night was marked by incandescence and lava flows. As of the 6th of August, the activity was maintained all day with feeding of the lava flows in several arms; the trémor testifies to a new stability.The tremor of the eruption of Fagradalsfjall is more fluctuating at the beginning of Augus thent starts to increase gradually on August 5. On August 5 in the morning, the webcams showed an incandescence at the level of the crater and a notable degassing on the lava field. In the evening, lava comes out of the crater in Geldingadalur, and flowed in a few branches and waterfalls in Meradalur. The crater rim collapsed considerably yesterday, and the lava may have found new flowings ways. The fissure eruption icontinued during 28 July-3 August. Lava fountaining and overflows from the fifth vent occurred at intervals of 10-15 hours, with similarly long periods of no activity in between; this pattern emerged around 17 July.As of the 2nd of August , IMO reported that the eruption continues, at the rate of the usual fluctuations of the tremor for several days. New measurements carried out on 27th of July showed that the average lava flow over the period July 2 - July 27 (25 days) is 11 m³ / s. For comparison, a closer look at the July 19 data, obtained with TF-FMS profile measurements and lava field signal measurements, indicates that the average flow rate is 2.-19. July was between 8 and 9 m³ / s. The lava emitted is now estimated at 109 million cubic meters and the covered area of ​​4.3 square kilometers. No lava has flowed in Geldingadalur, Nátthaga and Syðri Meradalir for more than three weeks as of July 27; the lavas emitted concern the valley of Meradalur. A partial collapse of a section of the internal wall of the crater of the active cone occurred on July 27. The periods of activity alternate with that of calm, as evidenced by the tremor. Lava flows is still into Meradalur. A glow was visible on the webcam at the level of the active cone from 00h until 6.30am. on 27 july . However, the amount of lava is slowly decreasing overall.The eruption remains active, with a strong spattering between 5 p.m. on July 25 and 2 a.m. on July 26, before the fog obscures the site. The oscillations of the tremor seem more regular for a few days. As of the 21st of July, the eruption remains irregular oscillating between phases of high and low activity and the activity of lava fountains changes about every five to seven minutes, with ten to fifteen minutes between periods of activity. A drop of ten meters is still to be overcome by the lava before it overflows Meradalur, and resumes its route towards the sea. IMO reported that the eruption continues in Fagradalsfjall, always more visible around midnight and early in the day of 19th of July. The tremor is characterized by fluctuations. Spattering and  overflows of lava are responsible for the flows that are heading towards Meradalur. Some pollution from the eruption was detected in the capital region on July 18, due to SO2 and sulfate particles (SO4). It does not come directly from the eruption area, but is caused by an older cloud of gas returning overnight (RUV). Further measurements were made at Fagradalsfjall / Reykjanes Peninsula on Monday July 19, when the plane equipped with an Isavia radar altimeter took profile measurements of the lava. In addition, data from the Pléiades satellite of July 2 has been received. Terrestrial models have been made based on these measurements and they are compared to data from June 26.The average lava flow over the period from June 26 to July 2 (6 days) was a little over 10 m³ / s but from July 2 to 19 (17 days) the average flow was 7.5 m³ / s. Volcanic activity changed at the end of June. Then the activity began to fluctuate between periods of strong lava flow, interspersed with periods of calm. Current measurements show that the lava flow has diminished considerably. The rash is therefore clearly on the decline. The lava volume is now 96 million cubic meters, and the area of ​​the lava field is just under 4 square kilometers. The increase in area has been very small over the past three weeks, as lava has mainly accumulated in the Meradalir valleys and on the western slope of these. During the past two weeks, no lava has flowed in Geldingadalur, Nátthaga and Syðri Meradalir. The tremor continues to vary; on webcams, a lava overflow occurred on 18th of July at 2:17 p.m., which fed lava flows in Meradalur. IMO reported that after a half-day break, the eruption in Geldingadalur took a better turn on July 16. The eruptive activity increased and resumed properly from ten o'clocks on 17th of July in the morning. Lava started to flow from the crater again towards Meradalur.A plane operated by the meteorological office flew over the region several times on 07/16: the eruption increased and the crater filled. According to local scientist the lava flow could be assumed to have a flow rate of around ten cubic meters per second. On July 15 evening, only visible difference: modifications of the tremor after 4 days of intense variations. Due to bad weather, the observatory has still not been able to make new satisfactory aerial observations and measurements. As of the 15th of July, the situation remains similar to the previous 2 days: the tremor varies in the same proportions, the lava seems to come out directly from the active crater after its morphological changes and flows in the direction of the valley of Meradalur.As of the 14th of July, IMO reported that morphological changes have taken place at the active crater in Geldingadalur and that a new channel has formed for the lava towards Meradalur but with the absence of news through the usual channels, presumably due to bad weather conditions. The variations of the tremor remain important. As of the 13th of July, the eruption continues with better visibility, at least on early morning. From the images of the webcams a dark plume at 3:48 a.m., and various incandescent events were visible, including one at 4:10 a.m. The tremor remains the same of the day before. Local observer reported that on the night of July 10 to 11, the eruptive activity gradually increased again. The episodic trend has resumed, with pulsating lava fountains lasting 6 to 8 minutes and intervals between each episode of around 5 to 6 minutes at the moment. This activity continued on July 11 in the early hours. As of the 9th of July, IMO reported that despite the foggy atmospheric conditions unfavorable to direct observation, it was possible to observe a resumption of activity at the level of vent # 5 around the middle of the night to 9th of July to 10th. An incandescence is first noticed, followed by spattering. The effusion of lava produces a lava flow, which spreads out in Meradalur. IMO reported that in recent days, the rhythm of the eruption at Fagradalsfjall has changed somewhat. Activity subsided a moment at the surface but lava was still flowing under the crust. Now surface activity resumed. Fumaroles are still emerging from the lava field, and "red" is still visible. As of the 5th of July, IMO reported that eruption of Fagradalsfjall continues according to the pattern noticed in recent days. As of the 4th of July, IMO reported that the activity has presented a new rhythm in recent days: between an almost total extinction, and a strong surge. This type of behavior has been the case before, but at the moment the fluctuations are longer and more extreme. This July 5, the activity was strong, but hidden by the mist in the early hours. IMO reported that after a sudden drop in the tremor on July 2 at around 1 a.m., no incandescent lava is now visible in the crater in Geldingadalur. An overview of the active vent in Geldingadalur showed that the crater has emptied and that no trace of incandescent lava is visible. But, the Coast Guard helicopter fly over a little later and noticed that lava has returned and a rise of the tremor around 4 p.m. marked a renew of the volcano activity and around 7 p.m., a spattering was visible at the vent # 5. The flows resume towards Meradalur around 10 p.m. And they are still active this July 3 at the start of the day.IMO reported that despite a drop in the volcanic tremor on 1s of July during the afternoon, coupled with low activity in the crater, it picked up nicely overnight. A possible collapse at the level of the crater is responsible for an ash plume around 3:44 a.m. on 2nd of July. IMO reported that it was difficult to interpret what is happening at the eruption site in Geldingadalur, where the seismic tremor dropped on June 28 and then picked up again. A heavy fog is blocking the view of the crater and is expected to last until Friday. The stability of the atmosphere may prevent the eruptive plume from forming.But on 29 June at 20:55, it was clear that there was still intense activity and plenty of lava. However, until verified on the ground, a new phase seems to be emerging. New measurements were made on Saturday 26 June, when the Coast Guard flew over the Fagradslsfjall eruption site with the Hasselblad camera from the Institute of Natural History, and new ground models of the flow / Fagradalshraun have now been prepared based on the images. The lava discharge over the period 11-26 June is 13 m³/s, which is similar to what has been the case since the beginning of May, but is still the highest figure observed so far. The lava flow has thus remained almost constant for almost two months. The volume of lava now measures nearly 80 million cubic metres and the area of the lava field is 3.82 square kilometres. The increase in surface area per day is slightly smaller than between the last measurements (2-11 June) (about 40,000 square metres per day instead of 60,000 square metres/day). On the other hand, the thickening in Meradalur in the east was 10-15 metres and 15 metres in Nátthaga in the south. The greatest thickening was at Geldingadalur to the south and east of the crater, with about 20 metres. SENTINEL-2 and Lansat 8 / USGS satellite images from 26 June 2021 of the Fagradalsfjall eruption show that there is still considerable activity in the lava fields of the Meradalur and Geldingadalur valleys. The most active areas remain the crater and the lava rivers. As of the 25th of June, the Nátthaga Valley appears to be filled with lava from the ongoing eruption and is starting to come out. No more obstacles now between the main road and the flow. Based on the current eruption activity, the lava flow probably will reach Suðurstrandarvegur via Nátthaga over the coming weeks.A map of soil deformation due to lava effusion in the Reykjanes Peninsula has been uploaded by the University of Iceland. The data taken into account for the period from March 25 to June 23, 2021 are corrected for the deformation of the plate boundary and the seasonal effects. The Fagradalsfjall eruption, which began in Geldingadalur on March 19, has now been going uninterrupted for almost three months. During this time, the rash changed rhythm several times. New craters opened or closed, lava flows increased, and their composition changed. The eruption has been a huge challenge for scientists, especially when it comes to predicting the channeling and behavior of lava flows. On the Nátthaga lava field, created by the eruption in Geldingadalur, an opening (a skylight) has formed. A drone video dated 20th of June shows a river of lava, flowing below the surface of the lava field. This indicates the presence of a complex network of lava flows which flow under the lava field itself in more or less large tubes / tunnels, and allows this fluid lava on a long journey while keeping its temperature high. As of the 17th of June the eruption f Fagradalsfjall continues. The flows in the valley of Nátthaga continue to slowly advance and especially to thicken. IMO reported on 16th of June that lava is still entering the Nátthaga Valley from four different points, the fourth of which started on Sunday 13th of June and is still flowing now. The flow extended into the Nátthagi valley and currently circulates mainly in tunnels. According to the latest data 15th of June from the Institute of Earth Sciences at the University of Iceland, the lava flow has been stable at 12 cubic meters per second for about six weeks, for a running total of about 60 million meters. cubes so far. As of the 15th of June, IMO repored that a mighty river of lava now flows into Nátthagi from Geldingadalur / Fagradalsfjall eruption. A large amount of fluid lava now rushes down the steep slope and collects in a pond at the bottom of the valley below. A large amount of lava flowed into Nátthaga. As of the 12th of June, IMO reported that the lava flow from the Geldingadalur eruption now appears to be heading largely to the eastern part of Meradalur, where the lava field has started to thicken considerably. So the thickness of the lava is 10-12 meters in the valley, but 2-3 meters at the edges. The thickening of the lava flow occurs in both Geldingadalur and Meradalir. There is less flow to Nátthaga. IMO reported that on 10th of June at around 4 p.m. at the site of the Fagradalsfjall volcanic eruption the activity is no longer characterized by fountains at the crater, but rather cascades. The pulsatile activity of the fountains, which has become the norm since May 2, has changed: the fountains have become smaller and more regular, to pass to a constant emission activity.  Overall lava production remains stable, however. Lava thickness maps were born, and show that in some places the lava reached more than 100 meters thick. IMO reported that eruption is still continuing. Little by little lava accumulates. In addition, the lava spurts are added to the crater. The most of the lava that flows from the crater flows under a lava crust, invisible on the surface. As of 8th of June, IMO reported that he eruption continues at Fagradalsfjall, with numerous lava overflows at the only active crater, and in the Náttagha valley, smoke emissions at the lava front (wildfires?) Which block the view of the lava flowing down the slope in the valley. IMO reported that on 8th of June the activity of Fagradalsfjall continues. The lava is already flowing over the two protective walls which had been built to slow the flow of lava towards the valley of Nátthaga, where it evolves less quickly at the level of the ephemeral pond; lava could continue to flow south and threaten a fiber optic cable and the Suðurstrandarvegur road. The protective walls are still standing, although lava is flowing over them. IMO reported that on the morning of June 5,an increase in turbulence and gas emissions during the eruption in Fagradalsfjall. A lava overflow occurred at the western dam and a very rapid lava flow flowed into the Nátthaga valley. The lava advanced to the ephemeral pond, while widening; it is fed by a bifid flow at the level of the drop closing the valley to the north. South of Geldingadalur, the flow has thickened and is heading south of the valley and could descend into Nátthaga, and block hiking trail A and access to the eruption. IMO reorted that the eruption of Fagradalsfjall continues, and on May 4, 2021 at around 7 a.m., lava flows around Gónhóll and cuts the path to the observation point: the area has become an isolated island creating a new kipuka. New measurements were taken onWednesday June 2. The average lava flow over the period from May 18 to June 2 (15 days) is 12.4 m³ / s. This measure confirms that the increase in lava flows that occurred in early May continued. The lava flow in May was therefore twice as high as the average for the first six weeks. The lava now measures 54 million cubic meters and the area of ​​2.67 square kilometers. Current measurements show that there is no sign of slowing down, on the contrary, an increase over time. It is impossible to predict how long how long the rash will last, at this point. As of the 1st of June, IMO reported that Fagradalsfjall eruption does not show significant changes; lava continues to seep into Meradalur - both Meradali and Syðri-Meradali - and into the Nátthaga Valley, a phenomenon visible especially in low light hours.As of the 30th of May the rain and poor visibility during the day, did not allow a good observation. The flow front in the Nátthaga valley was observed smoking, following the evaporation of the rain that fell on the very hot flow. IMO rported that eruption of Fagradalsfall continues, somewhat obscured by the bad weather conditions. After more than 2 months of eruption, the lava covers more than 2 km², and always causes fires in the vegetation. According to the Icelandic Institute of Natural History, around 31 hectares were burnt down. IMO reported that the Fagradalsfjall eruption showed little change. There is still some lava fountain activity going on, but it is minor based on views on web cameras. Lava is now flowing through Nátthagi. It could reach the Suðurstandarvegur road in 20 to 60 days depending on the lava flow in Nátthagi. Lava reservoirs have formed in the lava field. They slowly fill up and then empty into the lava field both on the surface and through lava tubes that have formed in the lava field. This allows the lava field to sometimes expand quickly and without warning into new areas. The lava field slowly builds up high, and the walking path to the viewing area on the ridge may soon be blocked by lava. On Friday 28th and in the morning on Saturady 29th, the weather was very bad on the site, and only an incandescence of the flow makes it possible to observe the activity in the valley of Nátthaga. As of the 23rd of May, IMO reported that lava, after rapidly descending a drop of a hundred meters, now flowed for about a kilometer in the flatter part of the Nátthaga Valley. It should spread out more slowly before passing the 15 meter lip at the southern end of the valley. The western dam was also breached, without however presenting a massive discharge. On May 24th, the gaseous pollution will move northwards, around Keflavkik to pass over Snaefelness. As of the 22nd of May IMO reported that at Fagradalsfjall, lava began to flow over the eastern fortification which was established at Nafnlausadalur (Unnamed Valley) and is now flowing into Nátthaga valley. The dam probably broke last night and by daylight it was clear where lava had flowed over the dam. For the past five weeks, a crater has dominated the activity and all the lava is coming out. This period can now be divided into two parts. There were first three weeks when the flow was 5 to 8 m³ / s and slightly increasing. During the past two weeks, the flow has been 11 to 13 m³ / s. Despite this increase, the lava flow is relatively small compared to many other eruptions. IMO reported that the fissure eruption in the W part of the Krisuvik-Tralladyngja volcanic system, close to Fagradalsfjall on the Reykjanes Peninsula, continued during 11-18 May. The lava effusion rate was 10.8 meters per second, lower than the 12.9 meters per second rate recorded the week before. Pulsating lava fountains from crater 5, about 7-8 episodes per hour, sent material higher than 300 m. Very high fountains were visible in Reykjavik. Lava continued to flow into the Meradalir Valley; on 17 May video showed sections of the cone's rim collapsing into the crater. By 18 May the area of the flow field had grown to 2.06 square kilometers, the total volume erupted was 38 million cubic meters. Authorities directed the construction of earthen barriers to prevent lava flowing into the Na¡tthaga valley and possibly overtaking Highway 427 (Sujurstrandarvegur) to the S, protecting the road and buried fiberoptic cables. The Aviation Color Code remained at Orange due to the lack of ash and tephra emissions. Authorities warned of increased gas emissions hazards.IMO reported that on May 10, gas emissions were about 10 to 11 thousand tons / day of CO2, 4000-5000 tons / day of SO2 and about 10 tons / day of hydrogen fluoride (anhydrous hydrofluoric acid).The latest lava and lava flow size data are based on flights between 12 p.m. and 1 p.m. on May 10, 2021  There was a significant increase in the lava flow at Fagradalsfjall last week. The average flow over the period is 13 m³ / s, which is much more than the almost 8 m³ / s measured at the beginning of May. The eruption of Fagradalsfjall continues, with the resumption of lava fountains on May 9th, 2021. The images taken by the Landsat 8 satellite in infra-red show that the active lava flow from vent # 5 is heading towards Meradalur. IMO reported changes in activity occurred on May 8, 2021 in the morning at Fagradalsfjall. Just before the disturbances, the lava fountain was very powerful, around 8:58 a.m., exceeding 450 meters in height. At 9:20 am, a small vent opened in the inner wall of the cinder cone on crack 5S. After the start of activity at this location, the fountaining stopped in favor of a weak spattering of the active vents. Since then, the emission of lava by the vent system has been continuous and no longer fluctuates. Lava flows spread south into Nafnlausi Dalurinn (the unnamed valley). The fountaining seems to have resumed, in a more modest way at vent 5, according to the images of the webcam langihryggur N. IMO reported that the eruption in Geldingadalur continues with spaced pulses. On 7th of May, vent # 5 is still active and its lava is now also pouring into Meradalur, on the green grass, and is about to cross one of the drains, tracing earthquake faults on the surface. IMO eported that there was a slight change in the measurements of the seismic tremor at Fagradalsfjall on May 5 shortly before 4.30am. The rytme  was the same until then, with about 10 min between lava jets. But on the morning of the 5th, about half an hour passed between powerful jets of lava. At 5:40 a.m., an unusually high lava fountain passed the frame of the RÚV webcam. It seems estimated at more than 460 m. IMO reported that the lava flow last week (April 26 - May 3) averaged 7.5 m3 / s. This is a slightly higher number than the number obtained last week compared to the previous week. So there is no sign that the rash is giving way. The volume of eruptions has now reached 23 million cubic meters, and the lava area is 1.41 km2. The biggest change last week is in the depression between Stórahrút and the humps east of Geldingadalur and in the lava spit from Geldingadalur to MeradalurIMO reported that on 3rd of may, the current eruptive phase of Fagradalsfjall, characterized by stops of about 3 minutes, then a sharp increase with jets higher than before (about up to 300 m. In height), which lasts about 10 minutes, continues. The lava fountains are visible from the coast.IMO reported changes in activity have been observed since 1 a.m. on May 2, with pulsating activity in the lava fountain at Crater # 5 in Geldingadalur, also reflected in the seismic tremor. It is characterized by stops of about 3 minutes, then increases with great force and jets higher than before (about up to 300 m. In height), an activity that lasts about 10 minutes. As of the 1st of May, around 11:45 p.m., a small fountain-fed lava flow flowed through a slit on the southern rim of crater 5b and a short distance down the slope. The first lava flow fed by a fountain in the eruption. Fountain-fed lava, also known as splash / spatter-fed lava, is formed when large drops of molten magma (splattering bombs). fall in such rapid succession that they are re-amalgamated into a cohesive liquid which then flows like lava. Volcanic activity continued from Geldingadalur crater on April 29, with a dramatic change in the appearance of the eruption since it erupted in 7-8 craters. The activity generates jets of magma, which rose up to 250 meters into the air. As of the 28th of April, IMO reported that the most eruptive activity was now located in the last craters of the eruption area, and in particular in the crater that can be seen on the mbl.is webcam. Near this crater, steam is emitted by mosses which burn, under the effect of the intense heat of the eruption (The naturalist of the Meteorological Office). There is no more activity in the southernmost crater and the northernmost one, from which only steam comes out. Thermal anomalies remain significant according to Mirova. IMO reported that explosive activity increased in Fagradalsfjall : Just before 8:30 p.m. on April 26, there was a phase shift in the activity of Vent # 5 - the southernmost vent of those that opened and have been active since April 13. The intensity (and vigor) of the explosive activity suddenly increased and began to support a lava fountain 40-50 m high, instead of 10 -15 m. usual. The eruption continues to support a more vigorous fountain on April 27 at 10:30 a.m. As a result, the lava flow in the "Nameless Valley" has increased dramatically. Additionally, activity in the northernmost vent (# 6) from April 13th appears to have decreased significantly, but the one just south of it (# 4) is still active. Not easy to judge the condition of the original vents in Geldingadalir, but there was still some glow in 'Norðri' last night. Volcanic activity in the Reykjanes Peninsula has remained stable recently. A large plume of steam emanates from the Geldingadalur eruption site on April 26, following favorable weather conditions which allowed the residents of Reykjavik to follow the eruption from a distance, both day and night. A summary from the Institute of Earth Sciences states that the average lava flow for the first 30 days of the eruption was 5.6 m3/s. Compared to most other Icelandic eruptions, the flow is remarkably low and relatively stable. The measurements on the lava now show that there has been some increase in the last 1-2 weeks. The average flow for the first 17 days was 4.5-5 m3 / s, but for the last 13 days it is close to 7 m3 / s.IMO reported that on 22nd of April Fagradalsfjall eruption continues without much change. On 20th of April, A magnitude 4.1 earthquake was measured at 11:05 p.m. this evening about three kilometers northeast of Mount Þorbjörn (6 km southwest of Fagradalsfjall). On the surface, old craters are called Sundhnúkagígaröðin. As of the 18th of April, IMO reported that the northernmost crater in the Reykjanes Peninsula's eruption zone, which opened on April 5, has ceased to erupt, as evidenced by aerial photographs by experts from the Institute of natural history yesterday. This crater was the highest on the eruptive site; these conditions may explain why the lava flow found it more convenient to exit through other openings. A summary from the University Institute of Earth Sciences indicates that the average lava flow during the first 30 days is 5.6 m³ / s. Compared to most other eruptions, the flow is relatively stable. Lava measurements now show that there has been some increase over the past 1-2 weeks. The average flow for the first 17 days was 4.5 to 5 m³ / s, but for the last 13 days it is close to 7 m³ / s.The results are the total flow from all craters over a six-day period, April 12-18. The month of April had averaged nearly 8 m³ / s. , slightly increasing from the average eruption flow and confirming that in parallel with the opening of more craters last week, the power of the eruption increased somewhat, the lava area reached 0.9 km² and the total volume now exceeds 14 million cubic meters. The development of the lava zone is not as "linear" as the development of volume, but this is because at first the lava field increased to thickness inside Geldingadalur rather than to spread. Iceland eruption update : Since new eruptive systems formed in Geldingadalur-Meradalur on Tuesday, it is possible to speak of magma now appearing in 8 places. Lava flowed from the last openings on the new hiking trail A on April 14 afternoon. There are no new measurements of the total lava flow from the eruption sites, but according to measurements taken by the Institute of Earth Sciences before the news was formed, the lava flow had remained fairly uniform at over the past four days, or about five cubic meters. per second on average. There was considerable pollution at the eruption sites yesterday; and the sites were closed. Experts from the Icelandic Meteorological Office carried out an overflight of the Geldingadalur / Meradalur eruptive site on April 13, revealing that the vents had increased to eight. The eruptions are all on the same fissure and the fissure is still directly above the magma chamber in communication with the earth's crust since February, so a number of earthquakes have been observed in many parts of the southwestern part of the country. The lava flow in Geldingadalur is constant, there is now around five to eight cubic meters of lava flowing per second and it has been so for quite some time. The eruptions that formed yesterday had no effect on the lava flow, according to an expert from the meteorological office.Gases circulated in the greater Reykjavík area throughout the day, at concentrations of 100 to 600 μg / m³. Changing winds will begin to carry the gas westward around 5:00 p.m. The eruption site in Geldingadalur, Iceland / Reykjanes Peninsula is constantly changing, and on the morning of April 13, four new craters opened. Lava flows at the end of the second hiking trail to the eruption sites. IMO reported that the latest lava flow size and lava flow data at Fagradalsfjall are based on the April 12 afternoon flight. The results show that the total flow from all craters over the past four days has averaged nearly 5 m³ / s. It's almost equal to the average bitrate from the start. It seems that the increase that took place last week, alongside the opening of new craters, was rather short-lived. The lava area has increased relatively little in recent days, as the recently formed magma mostly started to increase the thickness of the lava. The total volume now exceeds just over 10 million cubic meters. As of the 8th of April, IMO reported that the lava flow from the latest eruption fissure seems to mostly flow down into Geldingadalir. This third eruption fissure opened at midnight on the 6th of April and is between the two existing fissures. Rescue teams from the Icelandic Association for Search and Rescue had detected subsidence in the area on the 6th of April about 420 meters northeast of the original eruption area in Geldingadalir, which was about 150m long and about 1 meter deep.In the photos that were taken during the reconnaissance flight on the 7th of April it can be seen that the lava fields from the three eruption fissures are now merging. Lava from the third fissure has flowed south into Geldingadalir and northeast towards the eruption site above Meradalir. There is a continuous lava field between the three eruption sites, which in fact belong to the same volcanic fissure over the magma intrusion at Fagradalsfjall.IMO reported that eruption continues; The flow in the main channel was measured from video at a flow speed of 7.7 m./s., or 28 km / h. Photos taken on April 7 show that the new (central) fissure emits on both sides, and in the process swallowed the webcam, and that the lava fields have merged : a continuous lava field and three eruptive sites, which belong to the to the same eruptive fissure. This extends from Natthaga north-east to Kellir, above the magma corridor drawn since February. A new study of lava was carried out in the Reykjanes Peninsula ton April 6, using vertical aircraft photogrammetry. The results indicate that the lava flow is very weak in Geldingadalir and that the average flow since yesterday in the new crack is 4-5 m3 / s. The total flow is estimated at 5-6 m3 / s. Apparently, the increase seen yesterday was temporary. The intensity of the rash is therefore similar to what it was in the days before the new crack opened. A third crack opened at midnight between the two eruptive sites in Reykjanes, according to Einar Hjörleifsson, a nature conservation expert at the Icelandic Meteorological Office. The new crack opened directly in front of the web camera, 420 meters north of the spring in Geldingadalur. Rescue teams saw a landslide in the area yesterday, which was about 150 m long and about 1 meter deep, likely location of the new activity. Lava flows from the new fissure towards Geldingadalur. Information Officer for Landsbjörg, announced earlier today that it has been decided to expand the danger zone, as there are now eruption sites in two places and cracks between both. The area is closed until a new assessment.As of the 5th of April IMO reported that eruption was still going.  A new additional fissure opened at ca. 12:00 hrs on 5th of April near the initial eruption site in Geldingadalir. First estimates of the length of the fissure is ca. 200 meters, and the middle of the fissure is approximately 1 kilometer NE of the eruption site in Geldingadalir. The lava from the new fissure flows toward Meradalir valley, east of the new fissure. The lava from the fissures is non viscous and flows fast in a narrow lava-river into Meradalir valley, east of the new fissures, where a new lava field is forming. Helicopters from the Icelandic Coast Guard are at the new eruption site to make sure the area is evacuated. An airplain with scientists is on its way to the fissure for evaluating more presicely the location and the size of the new fissure.  Because of the lack of ash and tephra emission in the atmosphere, the aviation color code for Keflavik airport remains orange as there are no imminent hazard for the aviation. As of the 2nd of April, IMO reported that the vents, Nor ðri and Su ðri, were bustling today, with a fairly stable flow of gas drifting east with consequent pollution. The lava flow was stable, and the lava river appears to be elevated from the start of the week and is sustained at substantial levels. Part of the southern scoria cone collapsed on April 2 around 5:45 p.m., changing the morphology of the eruptive site. University of Iceland reported that analyzes of lava samples show trace elements and isotopes which confirm that the magma fueling the eruption in Geldingadalur has a different composition from that which caused the historic eruptions in the Reykjanes Peninsula. IMO reported that eruption in Geldingadalur is still ongoing. The activity of the lava fountain is low and no volcanic ash has been detected. The latest lava volume study was carried out today (March 31) by the University of Iceland, using vertical aircraft photogrammetry. This does not indicate that the rate of lava discharge is significantly decreasing. The average lava discharge rate over the period 29-31 March displayed on the graph is slightly above 5 m³ / s. The new geochemistry results do not show significant changes since the start of the eruption. IMO report - 29th of March : the volcanic eruption in Geldingadalir has now been ongoing for nine days. The lava is basaltic and highly fluid with little explosive activity. It is a very small eruption and the lava flow has been steady at 5-7 m3/s since its onset. Currently the extent of the lava field is within Geldingadalur but if the eruption keeps ongoing at a similar rate, it is modeled that the lava will flow east towards Merardalur valley. If the volcano continues to erupt it could eventually end up being categorized as a shield volcano. Shield volcanoes are generally formed over long time periods with lava fields extending from a few to several kilometers around its source. There is no way to tell how long the eruption will last.  The current magma is rich in MgO (8.5%) which indicates that it is from depths of around 17-20 km. There has been constant gas pollution close to the eruption site, spatially determined by local wind conditions. Gases can accumulate to life-threatening levels in certain weather conditions. There have been no indications of significant tectonic movements since the eruption started. There is currently no indication of new openings at other locations along the magma injection path. This eruption calls for specific and targeted monitoring of the eruption itself and also of the gas´s effects on air quality and the downwind environment. IMO reported that just before noon on March 28, 2021, the two craters of the volcano in Geldingadalur began to change their morphology somewhat. The craters have been given nicknames and the highest is called the south and the lower north. The flow of this through a southwest facing breach merged with the flow in the southern channel to the side of the lava rivers.On the morning of Sunday March 28, the lava reached an estimated 4 million cubic meters. To date, there has been no change in the chemical composition of the total rock samples. These measurements indicate that the magma originated from a deep magmatic reservoir, which probably lies near the crustal and mantle limit below the Reykjanes Peninsula..Lava that has formed over the Geldingadalur craters over the past nine days has now covered the valley floor. There are three to seven million cubic meters of lava rising from the earth, which may seem less on another scale as it is 0.003 to 0.007 cubic kilometers. The lava flow increases rather than decreases. Besides an explosion and a small plume of brown ash around 4:25 p.m., many people noticed beautiful pyrocumulus, visible as far as Reykjavik. As of the 26th of March, IMO reported that eruption in Geldingadalur is still ongoing. (new video with sound)The activity of the lava fountain is low and no volcanic ash was detected, but a high level of volcanic gases was measured near the eruption site, as well as very high thermal anomalies (measurements are less attenuated by the atmospheric conditions, this March 26, where we reached a VRP of 1172 MW). The lava field in Geldingadalur continues to expand steadily. (drone video). The Met Office has now made a lava flow forecast and, based on an eruption rate of five to six cubic meters per second, one can expect the lava field to pour into the next valley at Easter - likely Easter Monday (April 5). As of the 25th of March, IMO reported that eruption continues in Geldingadalur, with low fountaining activity, no ash production, but significant gas releases.According to the latest news from IMO, InSAR data suggests that the dyke is only shallow around the eruptive site, and that there is no indication of the presence of near-surface magma elsewhere along the dyke. As of the 24th of March, IMO reported that effusive eruption continued with some changes : - a second prominent vent formed adjacent to the existing main vent. - lava pools quickly form in Geldingadalur. It has been estimated that the flow of magma through the Geldingadalur craters is approximately 5.7 cubic meters per second. As part of monitoring the eruption, Pleiades images were used to measure lava thickness in the lava field, which reached up to 22 meters, lava volumes and effusion rates. As of the 23rd in the afternnon, IMO reported that a new, smaller fissure opened better on the side of the main crater during the eruption of Geldingadalur at Fagradalsfjall, where a large amount of dense lava flows. In recent days, most of the activity has taken place in the main crater, but now it's highly visible in both places. The southwest wind eased making the air quality unhealthy near the eruption site after 7:00 p.m. on March 23, 2021. The concentration of SO2 near the volcano can exceed 9000 µg / m3, and be higher in the valleys, like that of CO2. IMO and the Suðurnes police chief advise to leave the area before 5:00 p.m. and get away from the valleys. As of the 23rd of March inthe morning , IMO reported that eruption in the Reykjanes Peninsula / Geldingadalsgos is now stabilized on a single vent from the initial fissure. The explosive activity is low with the emission of lava packets, projected near the explosion zone and welded to the underlying projections. It built a cone of projections with steep walls, 25 meters high, in successive phases of construction-subsidence. Most of the lava comes out in the form of flows. This lava is smooth, pahoehoe, forms lava tunnels and builds a lava field which gradually fills the valley.As of the 22nd of March, IMO reported that vigorous lava spattering continues from the main vent, which has been building a steep-sided cone above the eruptive fissure. Over its two and half days of existence, this cone (also called a hornito currently) has been growing, sometimes partially collapsing, and thus changing its shape a lot, and it might evolve eventually into a new small mountain. At the moment, the main vent contains a small cauldron of boiling lava from where several lava flows descend into the valley, where they form a spreading field of lava that slowly but surely is covering the valley As of the 20th of March, IMO reported that at the end of afternoon, eruption showed a change on March 20 in the past four hours. At least 4 spatter cones are observed. The eruption is of low intensity but there is still a lot of magma in the crust. Temporary results indicate that the eruption fissure was originally about 200 m. in length, the lava about 10 to 15 m thick where it is thickest, and its total volume has grown to about 0.4 M m3. (video live) .The seismic activity does not disappear even in the event of an eruption, but it decreases; earthquakes can be expected as long as the lava is flowing. About 500 earthquakes were measured in Reykjanes on Saturday, but at worst at the start of the month they were in the thousands a day. IMO update 20th of March 1:45 PM : IMO update - 20th of March - 1:45 PM - The eruption site is in a valley, about 4.7 km inland from the southern coast of the peninsula. The coastal town of Grindavík is the closed populated region to the eruption site, located approximately 10 km to the southwest. The aviation colour code for Keflavik international airport has been lowered to orange as there is no indication of production of ash and tephra and no imminent hazard for the aviation. Volcanic gas (SO2) has been detected at the source of the eruption. A model for gas dispersion can be seen at the IMO web site. Currently, gas pollution is not expected to cause much discomfort for people except close up to the source of the eruption. The gas emissions will be monitored closely. IMO reported that at approximately 8:45 p.m. UTC on March 19, a volcanic eruption started in Geldingadalur, near Fagradalsfjall on the Reykjanes Peninsula. The eruption was first seen on a web camera positioned near the mountain. It was also confirmed on thermal satellite imagery. At the time of writing, the weather on the peninsula is wet and windy, and an orange glow can be seen in the low clouds on the horizon from Reykjanesbær and Grindavík. The eruption site is in a valley, about 4.7 km inland from the southern coast of the peninsula. The coastal town of Grindavík is the closed, populated area of ​​the eruption site, located about 10 km to the southwest.The eruption is considered small at this point and the eruptive fissure is approximately 500 to 1,000 m long. The magma zone is approximately 1km2. The lava fountains are small. As of March 15, IMO reported a total of 1,800 earthquakes have been detected by the IMO seismic network, including seven M3.0 or more. The strongest M4.3 earthquakes occurred at 10:32 p.m. northeast of Fagradalsfjall Most of the earthquakes detected today were located near Fagradalsfjall and in the evening mostly northeast of Fagradalsfjall. Between midnight and 5:43 am on March 16, around 500 earthquakes were detected in the Reykjanes peninsula, no earthquakes were measured above M3.0. The activity was mostly centered around Mt. Fagradalsfjall and east of Mt. Þorbjörn. IMO reported that on March 14, 2021, just over 3,000 earthquakes were located on the Reykjanes Peninsula. The largest M5.4 earthquake was measured just west of Nátthagi at 2:15 p.m. It was widely felt, north of Sauðárkrókur and east of Vestmannaeyjar. Twenty-eight earthquakes greater than M3.0 were counted, mostly south of Mount Fagradalsfjall, but just under 10 earthquakes greater than M3.0 were scattered west towards the Blue Lagoon. On 13th of March, , around 2,600 earthquakes were detected. The biggest earthquake occurred at 1:34 am on M4.6. by the southwest end of Mt. Fagradalsfjall, it was widely felt, on the Reykjanes peninsula, north of Borganes and east of Fljótshlíð. In the evening at 10:06 p.m., an earthquake from an M4.1 was also measured by Mt. Fagradalsfjall. As of the 11th of march, IMO reported that Over 1700 earthquakes have been measured in the Reykjanes Peninsula since midnight, few of which were over M3, the largest one measured M4,6 at 08:53 GMT this morning. As before, the magmatic activity is centered around Mt. Fagradalsfjall southwest of Mt. Keilir. IMO reported that on March 10, around 2,500 earthquakes were detected in the Reykjanes Peninsula. About 30 of these were of magnitude M3.0 and above, the largest of which was M5.1 at 3:14. About 800 earthquakes have been detected since midnight. The largest was M3.4 magnitude at 2:10 a.m. Scientists are closely monitoring the magma channel that has formed between Keilir and Fagradalsfjall on the Reykjanes Peninsula. The magma chamber is only about a meter wide but about 7 kilometers long and has moved two to three kilometers south over the past two weeks as the magma entered it. At the bottom of the magma chamber, at a depth of about five kilometers, there is a channel and from there flows about 15 to 20 cubic meters per second upwards, about three to four times the average flow of the Elliðaán rivers. The magma chamber is estimated to be about one kilometer from the earth's surface on the south side, but about two kilometers at Keilir. IMO reported that around 5:20 a.m. on March 9, 2021, increased seismic activity was detected in the southernmost part of the magma passage beneath Fagradalsfjall. A tremor pulse was detected at around the same time and lasted until about 7 a.m. This probably means that the passage of magma is developing towards the SW. Since then, there has been regular activity of small earthquakes. At 23:01, an earthquake of M4.0 occurred in Fagradalsfjall, a few minutes later another of M3.7 followed. They were felt in the southwest of Iceland. At 6:45 p.m. last night, the frequency of minor earthquakes increased but no sign of a volcanic tremor was detected. A few earthquakes of magnitude greater than M3.0 were detected during this activity, the largest one M3.4 at 8:40 p.m. As of the 8th of March, IMO reported that earthquake swarm on the Reykjanes Peninsula continues, but has decreased a little bit. Since midnight, about 500 earthquakes have been detected in the area - fewer than during recent nights - and that there were no signs of unrest.The largest earthquake was 3.3 magnitude event at 00:34. The activity was greatest at Fagradalsfjall, but earthquakes were also measured at Reykjanestá, Þorbjörn and Trölladyngja. (map) Yesterday (7 Mar) about 2800 earthquakes were measured on the peninsula, of which about 300 were analyzed manually. The largest quake was a 5.0 magnitude at 02:01, which was felt everywhere in the SW corner of the country. IMO reported that just after midnight at 12:22 am on March 07, 2021, a tremor was detected which lasted 20 minutes. This tremor was similar to that measured on March 3, which had lasted several hours. Following these events the seismicity intensified with earthquakes of more than 4. The biggest earthquake of the night was M5 at 2:02 am about 3 km west of Fagradalsfjall. As of midnight, more than 30 earthquakes on M3 have been located and 5 larger than M4. More than 22,000 earthquakes have been detected in the region since the start of the activity. According to IMO, on 5.03.02021, around 2800 earthquakes were detected and as of midnight around 700 were detected. At 11:29 p.m. an M3.5 earthquake was located by Fagradalsfjall No quakes were measured overnight, but the seismic activity is still significant. At 4:11 am on 03/06/2021, an M3.7 earthquake occurred by Fagradalsfjall. Five other earthquakes were measured above M3 this evening. There were 3 earthquakes of magnitude greater than M3 detected at noon, felt by the population. IMO reported that a tremor pulse was detected at 2:20 p.m. on March 3, 2021, and was observed at most seismic stations in Iceland. The pulse is located near Litli-Hrutur, halfway between Keilir and Fagradalsfjall. (webcam) .Similar signals have been observed leading to an eruption, but no eruption has been confirmed. IMO is working on a more in-depth analysis of the tremor drive.At 4:20 p.m., the measurements do not give clear indications on if and when the magma will reach the surface. Experts from the Meteorological Bureau are currently carrying out surveillance flights to see if silt depressions are forming in the area, indicating that the magma is very shallow.As a precautionary measure for domestic and international air travel, the Reykjanes Peninsula volcanic aviation color code has been raised from yellow (high unrest) to orange (increased unrest). The orange alert represents the third highest level, with red reserved for an imminent or ongoing volcanic eruption. Previously, IMO reported that since noon on the 26th seismic swarm started it increasing again and several earthquakes above M4 were recorded. The largest earthquake on February 26 was M4.9 at 10:38 p.m. This was widely felt in the SW eg. in Vestmanneyjar, Borgarfjörður, Rangárþing. Three earthquakes on M3.0 were detected around 2:30 a.m. The largest was M3.8 and was felt in the southwest and west of Iceland. Such intense swarms are not unheard of eg. on June 10, 1933, five earthquakes M4.9-M5.9 were recorded at Fagradalsfjall. The swarm is still ongoing and since February 23, the SIL system has detected more than 6,000 earthquakes in the region. IMO reported that the seismic swarm continues in the Reykjanes Peninsula. On 25th of February, at 14:35, an earthquake of M3.5 was detected near Fagradalsfjall and another at 14:21 of M3.2. The earthquakes were felt in Reykjanes and the capital region. The swarm is still ongoing and since February 24, the SIL system has detected more than 4,200 earthquakes in the region. IMO reported that after several severe earthquakes in the Reykjanes Peninsula on the morning of February 24, police, civil defense and the Earthquake Watch Service of the Meteorological Department declared the level of danger for the peninsula and region of the capital. On February 24 at 10:05 am, there was an M5 earthquake. 7 to 3.3 km SSO of Keili. This powerful seismic swarm is spreading over a relatively large area of ​​the Reykjanes Peninsula and Kristín Jónsdóttir, director of natural hazard monitoring at the Icelandic Met Office, said in Iceland Review that residents should be prepared for the possibility of even larger earthquakes. At least 45 of the earthquakes in the swarm are greater than magnitude 3, and at least 9 above M4, according to preliminary reports released around 12:30 p.m. Earthquakes have more than one point of origin extending between Lake Kleifarvatn and the town of Grindavík in southwest Iceland. Rocks fell from high points in Reykjanes and white steam jets from geothermal areas were seen in the area. IMO reported that seismic swarms have returned to the Reykjanes Peninsula since January 7, still without any sign of the start of an eruption. On January 10 at 03:15 UTC, a 4.1 Mw earthquake was felt over Reykjavik, preceding a daytime swarm of lower magnitude. An increase in the number of earthquakes was observed between December 28 and January 3, with 400 earthquakes during the week against 140 the previous week. Previous news 2020 - A small swarm marked the peninsula south of Merardalir on December 29 and 30, 2020. Previous news 2020 - IMO reported that at 1:43 p.m. on October 20, an M5.6 earthquake occurred in Núpshlíðarháls, about 5 km west of the Seltún geothermal area on the Reykjanes peninsula. The earthquake was felt widely across the country, particularly in the southern part of the Reykjanes peninsula and in the capital region, about 25 km from the epicenter.The earthquake was felt also in the Westman Islands and Borgarnes. To date, more than 250 aftershocks have been detected, the most important of the period between 3:27 pm and 3:32 pm The most important was M4.1, the other earthquakes between 3.0 and 3.8 . There is no sign of volcanic unrest in the area. IMO reported that at 7:06 p.m. and 7:08 p.m. on August 29, earthquakes M3.6 and M3.0 occurred just west of Kleifarvatn on the Reykjanes peninsula. Two earthquakes of similar magnitude, M3.4 and M3.0 occurred in the same location at 4:23 pm and 4:39 pm yesterday. The earthquakes were felt in the Reykjanes Peninsula, the capital region and Akranes. Smaller aftershocks have since occurred and are expected to continue.IMO reported that on August 26, 2020 at 4:15 PM, an M4.2 earthquake occurred about 10 km NE of Grindavík. Another M3.7 earthquake occurred in a similar location at 1:43 p.m. IMO has received many felt reports from the southwestern part of Iceland regarding these earthquakes. At 5:06 am on August 27, an M2.9 earthquake was detected near Fagradalsfjall but a swarm of earthquakes is still in progress there. In total, the IMO reported five earthquakes of magnitude equal to or greater than 3 over the last two days. IMO reported that an earthquake between M5 occurred on 20th of July at 23:36 in the area of ​​Fagradalsfjall, a tuya formed during the Pleistocene. The earthquake was widely felt in the southwestern part of Iceland. A considerable number of aftershocks occurred, the most significant were M3.5 at 00:08, M3.4 at 00:55, M3.0 at 02:19 and M3.4 at 03:09 and these were also felt in the southwest of Iceland. At 5:46 am, an M4.6 was detected. Rockfall was reported at Festarfjall, about 6 km SW of the epicenter of the earthquake. On July 18 at 05:56 a.m., an M4.1 earthquake was detected 4.1 km north of Grindavík. Earthquakes around Grindavík have continued in recent months due to deformation in the area. As of the 18th of July, IMO reported that a magnitude 4.1 earthquake occurred 4.1 km from Grindavik, on the Reykjanes Peninsula. It was preceded by another of magnitude 3; 2. Both were felt in Grindavik and Reykjanesbaer. The persistent seismic activity is, according to the IMO, in relation to the deformation due to magmatic intrusions in the earth's crust. IMO reported that the seismic swarm at the Eyjafjörður was still in progress. Since the crisis began on June 19, the National Meteorological Office's earthquake system has located more than 13,000 earthquakes, including three magnitude 5 earthquakes. There were still many small earthquakes in the region and it is still likely that there will be more larger earthquakes. As of the 11th of July, two earthquakes of more than magnitude 3 were measured just west of Herðubreiðartöglar on the Reykjanes peninsula.The first of magnitude 3.2 at 2:15 p.m. and the second at 5:47 p.m. of magnitude 3.1, but a report was received that the second earthquake was found in Drekagil by Askja.Earthquakes have persisted in the Grindavík region in recent months due to landslides. IMO reported that on July 8 at 5:41 p.m., an earthquake of magnitude 4.2 occurred approximately 13 km from the CP of Gjögurtá. The Icelandic Meteorological Office has received reports that the earthquake occurred in many parts of the Eyjafjörður region. The seismic swarm is still in progress. Since the onset of the crisis on June 19, the IMO has located more than 10,000 earthquakes. Three earthquakes larger than 5 were detected in the hryvnia, the largest being on June 21, the size of 5.8 at 30 km NNE from Siglufjörður. Other earthquakes of magnitude greater than 5 were 5.6 and 5.4 magnitude on June 20 and were located more than 20 km northeast of Siglufjörður. There are still many small earthquakes in the region, and larger earthquakes are likely to occur. IMO reported that the seismic swarm at the Eyjafjörður was still in progress. On 2nd of July at 7.20pm, an earthquake of magnitude 3.6 was detected between Olafsfjörður and Dalvik. IMO reported that the seismic swarm in the Tjörnes fracture zone, north-east of Siglufjörður, was still in progress. During the night of June 27th at 4:52 p.m., an earthquake of magnitude 4.0 was measured at approximately 35 km NNE from Siglufjörður, this morning at 6:02 a.m., another of magnitude 3.2 was measured at approximately 20 km northeast of Siglufjörður. On June 26th, the automatic system measured more than 700 earthquakes in the region, an earthquake> 3.0 was detected at a magnitude of 3.2 at 1:55 p.m. about thirty kilometers northeast from Siglufjörður. IMO reported that a third injection of magma since the beginning of the year was occurring beneath the Reykjanes peninsula. Data suggested that the current inflationary period began in mid-May, though earthquake activity did not increase until around 30 May. During 30 May-15 June the seismic network recorded more than 2,000 events, with the largest, an M 3.4, with more than 70 earthquakes of magnitude greater than 3, the largest reaching M 5.6 and 5.7. In total, the IMO has located more than 2,000 earthquakes since the start of this crisis.IMO also reported considerable rock collapses in Tröllaskagi, but also accident reports in Malmö. A power outage in Kelduhverfi was also reported after the second earthquake. There is a considerable risk of rock accidents and landslides on steep slopes in the northern fjords and on the Tröllaskagi and Flatey Islands. The seismic swarm is still in progress and may move east along the Húsavík-Flateyjarm gang. Larger earthquakes cannot be excluded. IMO recorded on 13 June a seismic swarm probably assiciated with a intrusion which was located about 1 km W of Thorbjorn at a depth of 3-4 km, and had an estimated volume of about 1.2 million cubic meters. This third intrusion was similar to the previous two intrusions, characterized as a sill that was a few hundred meters wide and about 6 km long. In total about 12 cm of uplift has been recorded since January. The Svartsengi geothermal plant noted no chemical changes in the geothermal system, though measurements showed increased fluid flow in the rocks within the system, along with the opening of old cracks and the formation of new ones. IMO reported that at 8:27 p.m. on June 13, an earthquake of magnitude M3.5 occurred approximately 3.7 km north of Grindavík, on the Reykjanes Peninsula. Residents of Grindavík felt the earthquake. It is part of a swarm of earthquakes in progress since May 30, and about 2000 earthquakes have been detected there since, mainly small earthquakes, sometimes more intense, including 3 of M between 2.5 and 2 , 9 and one of M3.5 on June 13. Observations of the area indicate signs of re-swelling around Þorbjörn. IMO reported that seismic activity has resumed on the Reykjanes peninsula since May 30. The IMO reports about 300 earthquakes since midnight, the strongest of M 2.7 felt in Grindavik.During the week of May 20 to 27, 120 earthquakes were counted. New GPS, InSAR, and radon measurements taken on May 26 indicate soft re-inflation near Þorbjörn; a longer-term series of measures is necessary to understand the processes and assess the risks. The phase of uncertainty declared by the Protecton Civile is still in force. IMO reported that uplift detected in the Thorbjorn area decreased in the beginning of April and stopped later in the month. Seismicity, which had occurred across three main volcanic systems: Eldey, Reykjanes-Svartsengi, and Krisuvik, had significantly decreased. These data indicated that the injection of magma beneath Thorbjorn had stopped, though there were indications of deformation over a larger area. On 4 May the Aviation Color Code was lowered to Green. IMO reported that seismic swarms continue. On April 11 at 9:55 am, an earthquake of Magnitude 3.2 occurred 4.6 km northwest of Grindavik, preceded by another of M2.8 at 9:32, both felt in Grindavik. Seismicity remains continuous in the Reykjanes peninsula, probably according to the IMO following three magmatic intrusions as reported on April 3. IMO reported that GPS measurements, along with detailed analysis and model calculations of the available data, now testify to a new magma deposit west of the Reykjanes Peninsula under Rauðhólar and Sýrfell.IMO reported that on March 25, at 9:44 am, an M3.4 earthquake occurred just north of Grindavík. The earthquake was felt in Grindavík. Considerable seismic activity has continued in the region in recent weeks due to the deformation of the region. The phase of uncertainty due to the uplift by Mt. Þorbjörn that declared civil protection is still in force.This confirms the data that was collected in collaboration with the Institute of Earth Sciences, ÍSORs, HS Energy and the Icelandic Meteorological Office after the start of activities in Thorbjörn.One model places the magmatic intrusion about 8-13 km deep, which is probably deep in the earth's crust at a depth considerably higher than the two magma deposits at Thorbjörn. IMO reported that activity in Grindavík remained high during the week of March 16 to 22 after a swarm of earthquakes that started on March 12. This is the same area as where previous earthquake swarms occurred earlier this year. About 1,000 earthquakes have been located on the Reykjanes Peninsula. The biggest earthquake of the week was M4.2 on March 18, about 5 km NW of Gunnuhver on the Reykjanes Peninsula. The earthquake was widely felt in the southwestern part of Iceland. On March 19, an M3.5 earthquake occurred 3.5 km NW of Grindavík. An M3.0 earthquake occurred on March 20 by Kleifarvatn on the Reykjanes Peninsula, where a small swarm of earthquakes occurred on the same day. IMO reported that on March 20, at 8:30 p.m., an earthquake swarm started close to Krysuvik. By midnight, 60 earthquakes had been detected in the region. The biggest M3 happened at 9:21 p.m. No reports were received. Then the activity decreased.IMO reported that on March 19 at 16 h 53, an earthquake of M3.3 was detected approximately 3 km NW of Grindavik. Few aftershocks followed. The IMO has received feeling reports from the Reykjanes Peninsula. On March 18 at 03:42 am, an M3.0 earthquake occurred approximately 5 km VNV from Grindavík. The uncertainty phase due to the uprising in Reykjanes is still valid according to the Ministry of Civil Protection. The latest distortion results around Mount Thorbjorn on the Reykjanes Peninsula indicate that inflation causing an uprising in the region has resumed. The uprising is slower than when it was measured in January, but seems to be in the same place. The most likely explanation for the signal is that the influx of magma has started again. IMO reported that at 10:32 a.m. on March 18, an M4.2 earthquake was detected approximately 3 km northwest of Gunnuhver on the Reykjanes Peninsula. The latest distortion results around Mount Thorbjorn on the Reykjanes Peninsula indicate that inflation causing an uprising in the region has resumed. The uprising is slower than when it was measured in January, but seems to be in the same place. The most likely explanation for the signal is that the influx of magma has started again.The inflation is occurring on plate boundaries and within the volcanic system of Svartsengi which is either considered a separate system or part of the Reykjanes volcanic system. The last known eruption was during Reykjanes fires, which occurred between 1210-1240 AD. Within that period a several eruptions occurred within that system, thereof there were three eruptions in Svartsengi system. The eruptions were effusive (non-explosive) fissure eruptions erupting on 1-10 km long fissures. No explosive eruptions are known from this system. The largest eruption in the swarm, from 13th century, formed Arnarseturshraun lava (estimated 0,3 km3 and 20 km2). The duration of these eruptions are usually from a few days up to several weeks. Seismic activity is very common in this area and is linked to the plate boundaries, geothermal activity and possible magma intrusions. The largest earthquakes measured in this area are about M5.5.

Iceland - Grimsvotn volcano

October 12th, 2020

As of the 11th of october, according to the Icelandic Met office, several signs of increasing activity (frequency of earthquakes, inflation, geothermal activity and rising heat flow) are noticed at Grimsvötn, which saw its aviation code change from green to yellow on September 30. Local volcanologist explains that an increase in seismicity and heat flux is observed 6 months to 2 years before an eruption. The water level of the subglacial lake, present above the Grimsvötn, increased sharply and reached higher values ​​than in 2004 and 2010, marked by jökulhlaup (glacial debacles) ... the sudden pressure relief destabilizes the volcano, and may cause an eruption. Increased monitoring of the volcano is required during this period of increased activity.As of the 30th of September, IMO has changed the aviation color code of the Grímsvötn volcano from green to yellow. Volcanic activity at Grímsvötn has gradually increased over time, as indicated by several regularly monitored geophysical and geochemical parameters that are now above known background level:- Seismicity over the past month has been above average.- Geothermal activity has increased in recent months with clear signs of cauldron deepening in several places around the caldera.- The deformation of the surface has exceeded the level it was at before the 2011 eruption.- Magmatic gases were measured in geothermal emissions this summer.- In addition, the water depth in the subglacial lake is comparable to the level prior to the 2004 and 2010 floods, which increases the likelihood of flooding in the months to come.Several datasets now indicate that the Grímsvötn volcano has reached a level of unrest comparable to that seen before the historic eruptions.For these reasons, the aviation color code has changed from green to yellow. This does not mean that a rash is imminent. As of the 12th of June, IMO reported that a research team measured an increase in volcanic gases from the Icelandic volcano Grímsvötn. The water surface of the subglacial lake in the caldera is high and a jökulhlaup (a glacial debacle) could occur in weeks / months, which can trigger an eruption following a discharge of weight on the magma chamber, according to Magnús Tumi Guðmundsson, professor of geophysics at the University of Iceland. Higher seismic activity, increased geothermal energy, and magmatic gas flow indicate that Grímsvötn is preparing for an eruption, according Magnús Tumi. Grímsvötn, Iceland's most frequently active volcano in historical time, lies largely beneath the vast Vatnajökull icecap. The caldera lake is covered by a 200-m-thick ice shelf, and only the southern rim of the 6 x 8 km caldera is exposed. The geothermal area in the caldera causes frequent jökulhlaups (glacier outburst floods) when melting raises the water level high enough to lift its ice dam. Long NE-SW-trending fissure systems extend from the central volcano. The most prominent of these is the noted Laki (Skaftar) fissure, which extends to the SW and produced the world's largest known historical lava flow during an eruption in 1783. The 15-cu-km basaltic Laki lavas were erupted over a 7-month period from a 27-km-long fissure system. Extensive crop damage and livestock losses caused a severe famine that resulted in the loss of one-fifth of the population of Iceland.The last major eruption of the Grimsvötn dates back to 2011, and emitted 0.8 km³ of tephra, preceded by smaller eruptions in 1998 and 2004.

Iceland - Oraefajokull volcano

July 15th, 2018

The IMO changed the status of Öraefajökull on 13 July. This volcano shows clear signs of instability, coupled with a phase of inflation for a year and a half, reflected by an increase in seismic activity and deformation, which are persistent. The probable cause of this inflation is one injection of new magma, with an estimated volume of about 10 million m³, a volume comparable to the intrusion under the Eyjafjalajökull before the eruption of 2010.Despite a drop in geothermal activity since the end of December, new resistivity measurements indicate the presence of altered rocks at superficial levels within the caldera due to high temperatures. IMO reported a seismic swarm is in progress at Öraefajökull; it began on June 26, 2018 with a magnitude 3.1 earthquake and continues with earthquakes of lesser magnitude.A magnitude 2.1 earthquake occurred outside the volcano, while appearing connected to it. Previous news 2017 - On 22 December 2017 IMO reported that activity had been fairly stable during the previous weeks, though still above background levels; the Aviation Color Code remained at Yellow. In December the largest earthquake detected was a M2.5, but most events were smaller than M1. Earthquakes were located close to the caldera 2 and 10 km. The Iceland Met Office (IMO) reported that that on 17 November the Aviation Color Code for Oraefajokull was raised to Yellow because satellite images and photos showed that a new ice cauldron had formed within the caldera the previous week. The new cauldron was about 1 km in diameter and 15-20 m deep, and signified a recent increase in geothermal activity. Scientists conducted an overflight on 18 November; in addition, while on the ground, they took water samples, measurements of electrical conductivity, and gas levels at the Kvojokull outlet-glacier, a valley glacier on the SE flank of Oraefajokull . There was no obvious sign of flooding in the Kvoro river. A sulfur odor, which had been reported for about a week, was also noted. An increase in the seismic activity was recorded for the last few months (the largest earthquake, an M 3.4, occurred on the 3 October), but was low for the past few days. IMO noted that there were no signs of an imminent volcanic eruption, though there was considerable uncertainty about how the situation will evolve. Oraefajokull Iceland's highest peak, is a broad glacier-clad central volcano at the SE end of the Vatnajokull icecap. A 4 x 5 km subglacial caldera truncates the summit of the dominantly basaltic and rhyolitic volcano. The extensive summit icecap is drained through deep glacial valleys dissecting the SW-to-SE flanks. The largest-volume volcano in Iceland, 2119-m-high Oraefajokull was mostly constructed during Pleistocene glacial and interglacial periods. Holocene activity has been dominated by explosive summit eruptions, although flank lava effusions have also occurred. A major silicic eruption in 1362 CE was Iceland's largest historical explosive eruption. It and another eruption during 1727-28 were accompanied by major jokulhlaups (glacier outburst floods) that caused
property damage and fatalities. (GVN/GVP)

ICELAND - Bardarbunga volcano

July 15th, 20205

IMO reported that shortly before midnight on July 13 at 11:41 p.m. an earthquake of magnitude 3 shook the southeastern part of the Bárðarbunga caldera and about an hour later on July 14, another earthquake of magnitude 3.6 shook the region. Previous news 2015 - On 26 April the Icelandic Met Office (IMO) lowered the Aviation Color Code for Bardarbunga to Green (the lowest on a four-color scale). No further signs of unrest had been noted since the end of the eruption on 27 February; seismicity within the caldera and the associated dyke intrusion continued to decline.Previously, the Icelandic Met Office reported that the eruption at Bárdarbunga's Holuhraun eruptive fissure, which began on 31 August 2014, had ended on 27 February; the Aviation Colour Code was lowered to Yellow. During an overflight scientists did not see any incandescence from the vents, although gas emissions persisted. Radar measurements showed that no increase in the extent of the lava field had been detected since mid-February.During 17-19 February, Icelandic Met Office reported continued activity at Bardarbunga's Holuhraun eruptive fissure, though the overall intensity of the eruption continued to decrease. Only one active vent was present in the crater, and the lava level in that crater continued to sink. The eruption plume rose no more than 1 km above the ground and drifted NE, and the lava channel was crusted over beyond the uppermost 200-300 m. The lava tube continued to feed the N and NE parts of Holuhraun, inflating the lava field. The reduced effusion rate was no longer able to sustain active breakouts in an area 17-18 km ENE from the vent. A 24 February report noted that the rate of subsidence was less than 2 cm per day and lava flows decreased substantially. Seismic activity continued to decrease although it was still considered to be strong. During 11-17 February, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure; the overall activity was persistent, but lower compared to recent weeks and months. Seismicity remained strong. Local air pollution from gas emissions persisted and GPS measurements showed that subsidence continued. The lava field covered 85 square kilometers on 14 February; measurements from 4 and 12 February showed almost no changes in the extent of the field. During 4-10 February, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. A 6 February statement noted that although there was a visible reduction in activity during the previous two weeks, seismicity remained strong. Local air pollution from gas emissions persisted and GPS easurements showed that subsidence continued.During 27 January-3 February, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure, with a lava-flow rate of about 100 cubic meters per second. Seismicity remained strong and local air pollution from gas emissions persisted. GPS measurements showed that subsidence continued. On 27 January the plume rose an estimated 1.3 km. A map made on 21 January showed that the lava field was thickening and not expanding significantly; the erupted volume was an estimated 1.4 cubic kilometers (15% uncertainty). During 21-27 January, IMO maintained Aviation Colour Code Orange due to continued activity at Ba¡rdarbunga's Holuhraun eruptive fissure. The lava field expanded along the N and NE margins. Seismicity remained strong and local air pollution from gas emissions persisted. Very high values of sulfur dioxide, about 84,000 mµg/m3, were recorded at the eruption site on 21 January; this value was the highest recorded at ground level since the eruption started. Total subsidence of the Bárdarbunga surface since mid-August was 61 m, and the volume of erupted lava was an estimated 1.4 cubic kilometers. The lava field covered 84.7 square kilometers on 22 January. A report issued on 27 January stated that the average rate of lava emission during the previous three weeks was just less than 100 cubic meters per second, herefore the intensity of the eruption was slowly decreasing.During 14-20 January, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The lava field expanded the N and NE margins. Seismicity remained strong and local air pollution from gas emissions persisted. GPS measurements showed that subsidence continued. The lava field covered 84.3 square kilometers on 15 January. During 7-13 January, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The lava field expanded the N and NE margins. Seismicity remained strong and local air pollution from gas emissions persisted. GPS measurements showed that subsidence continued. The lava field covered 84.1 square kilometers on 10 January. During 31 December-6 January, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The lava was flowing through a closed channel to the E edge of the lava field, about 15 km from the crater. Lava was also flowing N. Seismicity remained strong and local air pollution from gas emissions persisted. Subsidence continued at a rate of 25 cm/day. The lava field covered 83.4 square kilometers on 6 January. Preliminary analysis of radar measurements taken during an overflight on 30 December showed that the lava is on average 10 m thick in the E part, 12 m thick at the center, and about 14 m in the W part. The maximum thickness, near the craters, was about 40 m at the E margin of the lava lake. A preliminary estimate for the volume of the lava was 1.1 cubic kilometers. Total subsidence of the Ba¡rdarbunga surface since mid-August was 59 m. During 24-30 December, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The lava was flowing through a closed channel to the E edge of the lava field, about 15 km from the crater. Lava was also flowing N. Seismicity remained strong and local air pollution from gas emissions persisted. The lava field covered 82.8 square kilometers as of 29 December.During 10-16 December, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. A decreased rate of subsidence of the Bárdarbunga Caldera continued. The lava field covered just over 78.6 square kilometers on 15 December.During 3-9 December, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. The Scientific Advisory Board of the Icelandic Civil Protection reviewed data from the beginning of the eruption on 31 August to 3 December and found a decreased rate of subsidence of the Bardarbunga Caldera from up to 80 cm/day to 25 cm/day, with most of the subsidence concentrated at the center of the caldera. Data also showed a decline in the intensity of the eruption at Holuhraun, although seismic activity remained strong. After 100 eruptive days the lava field covered just over 76 square kilometers on 9 December, making it the largest lava field in Iceland since the Laki eruption (1783-1784). Additionally, the gas emissions have had an impact all over Iceland for the first time in 150 years.During 26 November-2 December, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Based on a field report from 25 or 26 November the activity was characterized as pulsating; lava surged from the vent for 2-3 minutes, every 5-10 minutes, causing bulges in the upper parts of the lava channel. Measurements obtained during an overflight on 26 November indicated that the total amount of subsidence of the Bardarbunga Caldera was about 50 m, with an estimated volume of 1.4 cubic kilometers. The rate of subsidence in the center of the caldera had decreased slowly compared to the first month of the eruption. Observers in Dyngjusandur, NE of the vent, photographed the plume at 1441 on 27 November and indicated that the top of the plume was 3.1 km above Dyngjusandur, and the base of the aerosol-laden lower part of the plume was about 1.4 km above the sand plain. A thermal image from 1 December showed several changes to the lava field: in just over 24 hours a new lava extrusion at the NE margin traveled 450 m; a new flow traveled N, just W of the lava lake; and a new flow was forming S of the lava lake, and then to the E of that flow. The lava field covered just over 75 square kilometers on 1 December. During 18-25 November, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure; FLIR thermal images of the craters on 18 November showed that the most intense area of thermal convection was at the northern part of the eruption site, called Heimasjta. Lava flowed ESE. Subsidence of the Bardarbunga caldera continued and local air pollution from gas emissions persisted. On 20 November observers characterized the eruption as pulsating explosions in the crater every 10-15 minutes, followed by a gush of lava down the main channel with splashing on either side During 12-18 November, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure; lava from the lava lake in the main vent, Baugur Crater, flowed ESE. Subsidence of the Bardarbunga Caldera continued and local air pollution from gas emissions persisted. Seismicity remained strong, although a report on 14 November noted that the number of earthquakes over M 5 seemed to be decreasing. The lava field covered 71.9 square kilometers on 14 November.During 5-11 November, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bardarbunga Caldera continued, and seismicity remained strong. The lava field was 60 square kilometers on 9 November. Local air pollution from gas emissions persisted.During 29 October-4 November, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bardarbunga Caldera continued; by 31 October the depression was about 42 m. The lava field was 65.7 square kilometers on 31 October. As of the 28th of october, effusive activity is still continuing. Lava is still issuing and is covering about 0.79km2/day. caldera subsidence continued at a rate 50cm per day. During 15-21 October, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bardarbunga Caldera continued at a rate of 30-40 cm per day, concentrated in the NE part of the caldera, and on 15 October was an estimated 0.75 cubic kilometers. On 18 October a M 5.4 earthquake was detected at 0940 in N Bardarbunga making it one of the biggest earthquakes since the start of the eruption. The lava field continued to grow and the lava production continued at the same rate; the lava field was 60.7 square kilometers on 19 October. From 15th to 16th of October seismic activity increased. About 130 earthquakes were recorded. Lava flows are still running to the North ans to the East. During 8-14 October, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bárdarbunga Caldera continued. The lava field continued to grow, with lava production unchanged. Seismic activity was low in the N part of the dyke and around the eruption site.During 1-7 October, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Bardarbunga caldera continued. Seismic activity at the N part of the dyke and around the vents declined, although the lava field continued to grow and lava production continued at the same output. Lava field measured more than 50 km2. On 5 October a new lava front at the S edge of the main lava flow advanced E. During 23-30 September, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Subsidence of the Ba¡rdarbunga caldera continued and had reached 27-28 m by 24 September. On 29 September the subsidence rate slowed slightly and was about 40 cm per 24 hours. Lava production continued at the same rate; the lava field was 46 square kilometers on 30 September. During 17-23 September, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Chemical analysis and geophysical modeling indicated that the source of the magma was at a depth of more than 10 km. Persistent subsidence was detected from the Bardarbunga caldera and crustal movements signified that the volume of magma in the dyke slightly increased. On 21 September the lava field measured 37 square kilometers. Field scientists estimated that about 90% of the sulfur dioxide gas from the eruption originated at the active craters and the rest rose from the lava field. Dead birds were also found around the eruption site. A report on 22 September noted that the total volume of the erupted lava was 0.4-0.6 cubic kilometers and the flow rate was 250-350 cubic meters per second. Persistent subsidence was detected from the Bárdarbunga caldera; the volume of the depression was an estimated 0.6 cubic kilometers on 23 September During 10-16 September, IMO maintained Aviation Colour Code Orange due to continued activity at Bardarbunga's Holuhraun eruptive fissure. Lava flows continued to advance at a consistent rate toward the E and W, and by 13 September, the lava field measured 24.5 km2. The main flow had entered the river bed of Jokkuls Follum and continued to follow its course; steam rose from the river where the lava was in contact but no explosive activity occurred. Persistent subsidence was detected from the Bardarbunga caldera; approximately 23 m of total subsidence was measured during a survey on 14 September. Seismicity persisted mainly around the caldera and the Dyngjujokull glacier. The largest earthquakes, M 5.5, M 5.3, and M 5.0, were detected on 10, 11, and 15 September respectively. IMO reported continued elevated SO2 emissions during 10-16 September and issued warnings to the public in the municipality of Fjarjarbyggen on 13 September. As of the 4th of September in the afternoon IMO reported that eruptive activity was continuing. Lava fountaining slightly increased during previous hours et lava emissions continued. (total covered surface is now about 10.8 km2. Lava tongue strench about 4km distance to the Northeast. During the past hour a graben formed below the Dynjujokull icecap. The seismicity remained at a high level. As of the 3rd of September, IMO reported that the eruptive activity was still continuing and characterized by small lava fountaining above the central part of the fissure and lava flows emissions around. In the morning the lava rate emisssions was 150 m3/s. The surface covered from the beginning of the eruptive phase is 6,5 km2 and the total volume between 30-40 millions/m3 (about 1/10 of the estimated dyke volume). Seismic activity remained important and a strong eartquakes mag 5.5. occurred in the morning located close the caldera. During 27 August-2 September the Icelandic Met Office reported ongoing seismic activity at Bárdarbunga volcano. On 27 August an overflight showed a 4-6-km-long row of cauldrons 10-15 m in diameter S of Bárdarbunga. The Aviation Color Code remains at Orange. As of the 1st of September in the morning , IMO reported that the eruptive activity was still continuing, characterized by lava fountaining and lava flows emission along the fissure. As of the 31st of August IMO reported that a new eruptive phase (second one) started probably on Sunday early morning. At 5:49 AM webcam showed an eruptive activity at the same place of the previous activity along the fissure. Eruptive activity was characterized by lava fountaining and lava flows emissions. Seismic activity remained important, mainly concentrated along a - 15 km line strenching from from Dynjujokull icecap to the area of the 29th of August eruption. As of the 30th of August, IMO reported that the first fissural eruptive phase ended. The new bulletin reported that the eruptive activity culminated between 00:40 AM - 1:00 AM, then dropped. At about 4:00 AM the short lava flows were not longer supplied. Alert level lowered from red to orange. Previously, as of the 29th of August, IMO reported that an 100 m -long eruptive fissure opened at midnight at about 10 km North Vatnajokull. Webcam images showed red glowing and small lava fountaining above the basaltic fissure. Later bulletin reported that the fissure strenched 400 m to 1 km long. The activity dropped at 2:40 AM . On the morning webcam showed only a small gas plume issued from the fissure. On 26 August the location of the seismicity was located primarily along the 10 km long tip of the dike that extended 5 km beyond the glacier margin. During 22-26 August several earthquakes in the 4.7-5.7 magnitude range had been detected at or near the volcano. On 23 August seismic tremor indicated a small lava-eruption 150-400 m beneath the Dyngjuj0kull glacier, prompting a change in the Aviation Color Code to Red. On 24 August observations from an overflight indicated there was no eruption and the Aviation Color Code was changed to Orange. However the seismic activity remains important with 700 eathquakes from Sunday 00 AM to 2:30 pm (two with more than 5 in magnitude). As of the 23rd of August, RUV reported that a possible mall sub-glacial volcanic eruption has started near Bardarbunga volcano, under the icecap of Dyngjujökull glacier in the northern part of Vatnajökull Glacier, according to the Icelandic Met Office. All air traffic is now prohibited in a large radius around the volcano. The National Commissioner of the Icelandic Police has raised the alert phase to emergency phase accordingly. Furthermore, the Met Office has raised the aviation color code from orange to red resulting in the air space above the eruption site being closed. The eruption is considered a minor event at this point. Because of a pressure from the glacier cap it is uncertain whether the eruption will stay sub-glacial or not. The Coast Guards aircraft, TF-Sif, is currently monitoring the area and there are no visible signs of a plume at this moment. Nothing indicates floods because of the eruption. At this stage measurements taken are based on a small event. The Jökulsárgljúfur canyon has been closed and evacuation of tourists in that area and around Dettifoss waterfall has started. The situation at this stage does not call for evacuation of habitants in Kelduhverfi, Öxarfjördur and Núpasveit. People in those areas are encouraged to watch news closely and have their mobiles switched on at all times.This story, by the Icelandic National Broadcasting Service (RUV), was updated on 23 August 2014, at 15.13 GMT - Previously, during 13-19 August the Icelandic Met Office reported increased seismic activity at Bardarbunga volcano. On 16 August more than 200 earthquakes were reported under the NW Vatnajokull ice cap, and GPS stations have shown an increasing signal upward and away from the volcano since early June 2014. On 16 August the Aviation Color code was increased to Yellow. On 18 August the Icelandic Met Office reported an earthquake swarm to the E and another to the N of Bardarbunga. A M4 earthquake was recorded that was the strongest in the region since 1996. By 18 August there had been 2,600 earthquakes detected at the volcano; earthquake locations from N and E swarms had been migrating NE, but in the evening activity of the N swarm had decreased significantly. That same day the Aviation Color code was raised to Orange. The large central volcano of Bárdarbunga lies beneath the NW part of the Vatnajokull icecap, NW of Grimsvotn volcano, and contains a subglacial 700-m-deep caldera. Related fissure systems include the Veidivotn and Trollagigar fissures, which extend about 100 km SW to near Torfajokull volcano and 50 km NE to near Askja volcano, respectively. Voluminous fissure eruptions, including one at Thjorsarhraun, which produced the largest known Holocene lava flow on Earth with a volume of more than 21 cu km, have occurred throughout the Holocene into historical time from the Veidivotn fissure system. The last major eruption of Veidivotn, in 1477, also produced a large tephra deposit. The subglacial Loki-Fogrufjoll volcanic system located SW of Bárdarbunga volcano is also part of the Bárdarbunga volcanic system and contains two subglacial ridges extending from the largely subglacial Hamarinn central volcano; the Loki ridge trends to the NE and the Fogrufjoll ridge to the SW. Jokulhlaups (glacier-outburst floods) from eruptions at Bardarbunga potentially affect drainages in all directions. ( Icelandic Met Office) - Webcam and seismic recording

ICELAND - Askja volcano

September 5th, 2021

On 3 September IMO reported that inflation at Askja had begun in early August based on ground deformation data derived from satellite images and continuous GPS data. The uplift was centered at the W edge of Oskjuvatn caldera and vertically deformed at a rate of about 5 cm per month. Data indicated that the source of the inflation was at a depth of about 3 km and
caused a volume change of about 0.01 cubic kilometers per month; the source was unknown, though most likely was caused by an influx of magma. The Aviation Color Code remained at Green.Askja is a large basaltic central volcano that forms the Dyngjufjöll massif. It is truncated by three overlapping calderas, the largest of which is 8 km wide and may have been produced primarily from subglacial ring-fracture eruptions rather than by subsidence. A major rhyolitic explosive eruption from Dyngjufjöll about 10,000 years ago was in part associated with the formation of Askja caldera. Many postglacial eruptions also occurred along the ring-fracture. A major explosive eruption on the SE caldera margin in 1875 was one of Iceland's largest during historical time. It resulted in the formation of a smaller 4.5-km-wide caldera, now filled by Öskjuvatn lake, that truncates the rim of the larger central caldera. The 100-km-long Askja fissure swarm, which includes the Sveinagja graben, is also related to the Askja volcanic system, as are several small shield volcanoes such as Kollatadyngja. Twentieth-century eruptions have produced lava flows from vents located mostly near Öskjuvatn lake.
(GVN/GVP) - Icelandic volcanoes data base

*********************************************************************************************************************************************************************************************************

Spain - Cumbre Vieja - La Palma (Canary Islands)

September 17th, 2021

As of the 16th of September seismic activity continues to migrate slightly to the northwest, at depths of about 8 km, recording, in addition, 50 shallow earthquakes between 1-5 km. The maximum cumulative deformation reaches about 10 cm.According to InVolcan / Instituto Volcanologico de Canarias, 11 million cubic meters of magma have already been injected inside Cumbre Vieja. Previously INVOLCAN reported that seismic activity, which started in La Palma / Canary Islands at 3:18 a.m. (UTC) on September 11, 2021, continues. Until 12:00 (UTC) on September 15, 4,222 earthquakes were detected in the southern area of ​​the island of La Palma, of which a total of 920 were located. The activity continues to migrate in a north-westerly direction. Since 00:11 (UTC), 20 earthquakes have been located at depths between 1 and 3 km (with errors between 2 and 3 km), the event with the highest magnitude being 2.9 mbLg, at a depth of 0.4 km. The rest of the activity continues at depths between 7 and 9 km. The energy accumulated so far is 2.5 × 1011 Joules. These movements were observed both with the island's GNSS network and with InSAR data (Sentinel-1).PEVOLCA confirms an Amarilla semaphore. In recent years, the Cumbre Vieja / La Palma volcano - Canary archipelago - has experienced 10 seismic swarms: 1 in 2017, 1 in 2018, 5 in 2020 and 3 in 2021, including the one that started last Saturday, September 11. This latest swarm, which started at 4:18 a.m. (Canary Island time) on September 11, 2021, currently has more than 400 earthquakes located under Cumbre Vieja at depths of about 12 km (according to IGN, the hypocenters are located between 8 and 11 km deep). The depth of previous seismic swarms oscillated between 20 and 30 km. The magnitude of the earthquakes has increased in the past few hours with 10 earthquakes of magnitude 3 mbLg or greater, the highest magnitude being 3.4 mbLg which was recorded at 23:46:55 UTC on September 12 with the epicenter north of Fuencaliente.The geochemical monitoring program for volcanic monitoring on La Palma allowed us to detect in 2020 (16/09/2020), the highest helium-3 emission value observed on La Palma in the last 30 years , and after this detection, the observatory recorded the highest number of seismic swarms in La Palma since 2017 (7 out of a total of 10).Without a doubt, the current seismic swarm represents a significant change in the activity of the Cumbre Vieja volcano and is linked to a process of magmatic intrusion into the interior crust of the island of La Palma. The management of PEVOLCA recommends changing Cumbre Vieja from green to YELLOW, and does not exclude an intensification of the seismicity felt in the coming days, depending on the evolution of the activity.The 47-km-long wedge-shaped island of La Palma, the NW-most of the Canary Islands, is composed of two large volcanic centers. The older northern one is cut by the massive steep-walled Caldera Taburiente, one of several massive collapse scarps produced by edifice failure to the SW. The younger Cumbre Vieja, the southern volcano, is one of the most active in the Canaries. The elongated volcano dates back to about 125,000 years ago and is oriented N-S. Eruptions during the past 7,000 years have formed abundant cinder cones and craters along the axis of Cumbre Vieja, producing fissure-fed lava flows that descend steeply to the sea. Eruptions recorded since the 15th century have produced mild explosive activity and lava flows that damaged populated areas. The southern tip of the island is mantled by a broad lava field emplaced during the 1677-1678 eruption. Lava flows also reached the sea in 1585, 1646, 1712, 1949, and 1971. (GVN/GVP)

******************************************************************************************************************************************************************************************************

European volcanoes Catalog online

****************************************************************************************************************************************************************************************************

Etna from space

 

Strombolian activity - Etna 13th of January 2021 (Photo Giusa)

Etna eruption - 16th of February 2021 (Photo G.Giusa)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fagradalsfjall eruption on 20th of March (Iceland)

 

FRANCE - Piton de la Fournaise (Reunion island)

September 1st, 2021

OVPF recorded in August a total of 37 superficial volcano-tectonic earthquakes (0 to 2.5 km above sea level) under the summit craters - 2 deep earthquakes (below sea level); - 311 collapses (in the Crater Dolomieu, the ramparts of the Enclos Fouqué and Piton de Crac, and the Rivière de l'Est).The inflation of the building, initiated in April 2021, continued throughout August 2021. This inflation showed a pressurization of the superficial magmatic reservoir located around 1.5-2 km deep . The inflation of the building and the CO2 contents in the soil which remained high in August 2021, witnessed magmatic transfers from deep zones to the superficial magmatic reservoir which continued after the end of the eruption of April 9-May 24, 2021. OVPF reported that after a sharp drop in the volcanic tremor on May 23, and an activity mainly presenting degassing both at the level of the cones and of the lava field, in connection with the precipitation of recent days, the OVPF reported on May 24, theat the volcanic tremor stops around 2 a.m. local (23.05.2021 / 10 p.m. UTC); no recovery has been observed since. The eruption has stopped. As of the 22nd of May, OVPF reported that the effusive eruption continued within lava tunnel. As of the 13th of mat, OVPF reported that images of the cameras of the OVPF and the OVPF / IRT of the last 24 hours, as well as the images taken by the SAG and the PGHM during an overflight yesterday around 3:30 p.m. show that: the two cones are still active with strong degassing. The lava level in the two cones is now very low, and the most downstream cone has closed considerably compared to the day of May 11. The most downstream cone projects lava fountains at 5 minute intervals to a height of 5-6 m above the cone. the flow of lava at the exit of the eruptive vents is mainly in tunnels up to the upper limit of the large slopes, where lava resurgences are sometimes visible on the surface; the flow front continues its slow progression in the Grandes Pentes, it was yesterday around 3:30 p.m. at an altitude of 920 m. The CO2 fluxes in the soil are always increasing in the far field (Plains region). However, over the last 48 hours, no significant deformation has been recorded. An overview of the eruption at Piton de la Fournaise by SAG and PGHM on May 12 afternoon showed that the lava level in the 2 cones is now very low. During the morning, the lava lake located in the upstream cone seemed to have disappeared. Strong degassing was still present. The amplitude of the volcanic tremor (indicator of a surface lava emission) continues its slow decrease that began on May 2. The images from the OVPF and OVPF / IRT cameras over the past 24 hours show that the lava flow at the outlet of the eruptive vents, is mainly in tunnels and up to the upper limit of the large slopes. , where lava resurgences are sometimes visible on the surface; the flow front continues its slow progression in the Grandes Pentes, now only in spurts. The flow front was located at 3:30 p.m. at an altitude of 920 m. The CO2 fluxes in the soil are still increasing in the far field (Plains region) and decreasing in the near field (Volcano Gîte) suggesting that deep recharge is continuing. OVPF reported that the slow decrease in the tremor initiated at Piton de la Fournaise since May 2 continues. However, its amplitude remains significant, still reaching 30% of the maximum amplitude observed during this eruption on April 13. The two cones are still active, with degassing and projections of lava present at the downstream cone. A significant gas plume on May 12, covering the whole of the Enclos. As of the 11th of May, OVPF reported that the two cones are still active, with a degassing which is always more marked and projections of lava always present at the level of the most downstream cone. The main cone has a base cone width of 226 m and a height of around 35 m. The flow front has still not reached Piton Fréri (located at an altitude of 1000 m), confirming its slow progression. The lava, however, engulfed the small cone above the Piton Fréri. As of the 9th of May, OVPF reported that the amplitude of the volcanic tremor (indicator of an emission of lava on the surface) continues its slow decrease that began on May 2. However, its amplitude remains significant, still reaching 40% of the maximum amplitude observed during this eruption on April 13.The 2 cones remain active on May 8, with a more marked degassing of the downstream cone.The flow front continues its progression in the Grandes Pentes and reached an altitude of approximately 1,200 meters on May 8 during the day. As of the 7th of May, OVPF reported that the tremor decreases slightly, with an amplitude which remains significant at 50% of the max. observed on April 13. Both cones are active; degassing is more marked on the downstream cone. The flow of the lava at the exit of the eruptive vents, takes place mainly in tunnels and this almost to the upper limit of the large slopes, where resurgences of lava are visible on the surface. The flow front continues its slow progression at the top of the Grandes Pentes. As of the 6th of May, OVPF reported that eruption continues. Images taken on 5th of May in the morning by OVPF/IRT confirmed that two cone were sill active. The lava front is still progressing slowly on upper part of the Grandes Pentes at about 1400 m elevation. A flight carried out on May 4th in the morning by a team from the Piton de La Fournaise observatory confirmed that the two cones were still active; projections of lava were only visible this morning at the smallest cone downstream, while a lake of lava was still present at the level of the most imposing cone upstream. The flow of the lava at the exit of the eruptive vents, is done mainly in tunnels and this almost to the upper limit of the large slopes, where resurgences of lava are visible on the surface. The flow front continues its slow progression at the top of the Grandes Pentes. In 24 hours, the flow front progressed by around 180 m, and this morning was around 1,500 m altitude. As observed during the last two days, fires in the vegetation located at the foot of the rampart and at the flow front were observed. As of the 3rd of May, OVPF reported that eruption continues. The amplitude of the tremor after having stagnated from April 29 to May 1, resumed its tendency to slowly decrease since May 2. However, its amplitude remains significant, still reaching 50% of the maximum amplitude observed during this eruption on April 13. Over the past 24 hours, 6 superficial volcano-tectonic earthquakes (between sea level and the surface) have been recorded, all located directly above the summit craters. As of the 2nd of May, OVPF reported that improvement in weather conditions on site since last night has made it possible to observe the eruption from Piton de Bert and more generally from the rampart on the Enclos Fouqué. We can distinguish, the two vents, a more intense plume on the vent located most downstream, the flow from the eruptive site and up to the break in slope, as well as the smoke produced by the fire present at the foot of the rampart. at the level of the Nez Coupé du Tremblet. Surface flows estimated from satellite data via the HOTVOLC platform (OPGC - Clermont Auvergne University) remain below 8 m³ / s. However, the lava flow, now largely tunneled, probably leads to an underestimation of this flow. Note, since this morning the presence of a fire in the vegetation located at the foot of the cut nose of Tremblet.On May 1st local observers report the closure of the two cones, and an activity that takes place in tunnels. Over the past 24 hours, a single superficial volcano-tectonic earthquake (between sea level and the surface) has been recorded, located directly above the summit craters.The CO2 fluxes in the soil are always increasing in the far field (Plains region). A slight inflation (swelling) of the summit area and the base of the terminal cone seems to appear. As of the 30th of April, OVPF reported that eruption continued. Over the past 24 hours, a single superficial volcano-tectonic earthquake (between sea level and the surface) has been recorded, located directly above the summit craters. CO2 fluxes in the soil are still increasing in the far field (Plaine des Cafres). As of the 29th of April, OVPF reported that eruption continued without notable change. OVPF reported that after a few days without much visibility and visual observations, the intensity of the tremor seems to have started to decrease for 2 days.Over the last 24 hours, 2 superficial volcano-tectonic earthquakes (between sea level and the surface) have been recorded under the summit craters. CO2 fluxes in the soil are still increasing in the far field (Plaine des Cafres and Plaine des Palmistes). As of the 28th of April, OVPF reported that hat eruption continues. An overflight carried out on the volcano confirmed that two cone were sill active . Few lava flows were visible at the surface. As of the 23rd of April, OVPF reported that the weather conditions and the observation of the eruption remain very poor at Piton de la Fournaise , for a few days. The eruption continues at the level of the two cones at a relatively stable level for several days, as indicated by the intensity of the tremor.OVPF reported that the eruption continued . No direct observation of the eruptive site could be made on April 22nd given the very bad weather conditions on the volcano. The intensity of the volcanic tremor (indicator of a surface lava emission) over the last 24 hours has remained relatively stable and comparable to that observed in previous days. CO2 fluxes in the soil are still increasing both in the far field (Plaine des Cafres and Plaine des Palmistes) and in the near field (Gîte du volcan).The flow front has now been frozen for several days at a hundred meters upstream of the Bonnet crater, . and that the lava field now extends laterally, and by thickening at the level of the network of lava tunnels that have developed on the plateau downstream of the cones. The total length of the flow was of the order of 3.5 km and its maximum width of 750 m. As of the 20th of April, OVPF reported that eruption continues. Over the past 24 hours has remained relatively stable and comparable to that observed in previous days.Observations of the eruptive site made during an overflight aboard a microlight on April 20 still show a main eruptive cone and a secondary eruptive cone about a hundred meters downstream (resulting from the merger of the two secondary vents which were still visible at the end of last week), each presenting an activity of lava fountains and degassing. The flow activity focusing on the plateau downstream of the eruptive site, with a regime of lava tunnels showing this morning a main resurgence about a hundred meters from the secondary cone. The absence of active flow at the level of the Grandes Pentes with a front which therefore remains frozen just upstream of Piton le Bonnet. Volcanic tremor remains stable. Observations on 19th of April of the eruptive site still show that the activity of lava fountains continues, mainly on the main cone located most upstream, and that the flow activity is focused on the plateau downstream of the eruptive site, with the setting in place of a lava tunnel regime showing numerous resurgences. Over the last 24 hours, 22 superficial volcano-tectonic earthquakes (between sea level and the surface) have been recorded under the summit craters. An observation flight carried out on 17th of April in the morning over the eruptive site revealed that the flow front located at the top of the Grandes Pentes was now frozen; the lava ront activity is now focused on the plateau downstream of the eruptive site, with the establishment of a lava tunnel regime showing numerous resurgences; the three eruptive cones are now fully enclosed laterally, only letting the lava escape through their top mouths and through tunnels. A merger between the two most downstream cones is taking place.Pélé's hair was observed at Le Baril, in Saint-Philippe. OVPF reported on 15th of April that eruptive site now show three distinct eruptive vents, one main and two secondary ones of lower activity downstream. These two secondary mouths correspond to the mouth located downstream of the main mouth from which two regimes of lava fountains had escaped and which formed by accumulation of projections two small distinct conesThe eruption continues. The intensity of the volcanic tremor (indicator of the intensity of the eruption) has increased steadily since yesterday morning to reach a level higher than that observed during the first hours of the eruption. After five days of eruption, activity is not waning. Unfavorable weather conditions allowed only rare observations of the eruptive site. the explosive activity maintains two eruptive vents, a main one upstream, and one below with two contiguous vents animated by more modest activity. The intensity of the main lava fountain fluctuates, alternating phases of calm (~ 20m high) with more intense phases (80-100m high). As of the 14 th of April OVPF reported that eruption that began at Piton de La Fournaise on 04/09/2021 at 7 p.m. (appearance of the tremor) continues. The intensity of the volcanic tremor (indicator of the intensity of the eruption) is always very fluctuating. On the last 24 hours, 36 superficial volcano-tectonic earthquakes (between sea level and the surface) have been recorded under the summit craters. Observations of the eruptive site still show two eruptive vents, a main and a secondary of lower activity slightly downstream from which two regimes of lava fountains escape. The height of the lava fountains emitted by the main mouth was between 20 and 40 meters depending on the periods of activity. The surface flows estimated from satellite data via the HOTVOLC platform (OPGC - Clermont Auvergne University) remain very disturbed by the cloud cover on the eruptive site with values ​​between 8 and 30 m3 / s since the start of the eruption. As of (the 13th of April, OVPF reported that eruption continues. The intensity of the volcanic tremor (indicator of the intensity of the eruption) over the last 24 hours has been very fluctuating. These fluctuations can be linked to either: - the cone under construction which undergoes construction and dismantling phases, thus influencing the speed of the lava flows at the level of the vent; or to punctual releases of pockets of gas trapped in the supply ducts which can be released suddenly causing an increase in the tremor with a certain periodicity. Observations of the eruptive site always show two eruptive mouths, a main and a secondary of lower activity slightly downstream. The height of the lava fountains emitted by the main mouth fluctuates between 20 and 60 meters depending on the period of activity. On the evening of April 12, the flow front was located in the Piton le Bonnet sector at an altitude of around 1500-1550m, the flow had thus traveled about 3.6 km since the start of the eruption. OVPF reported that eruption that began on 04/09/2021 at 7 p.m. (appearance of the tremor) at Piton de La Fournaise continues. The intensity of the volcanic tremor (indicator of the intensity of the eruption), after a relatively stable phase on the day of 04/10/2021, has been declining gradually since 9 a.m. local time on April 11. Following an overview of the eruptive site carried out this morning with the assistance of the SAG and the PGHM, the eruptive fissure could be located with precision, 700 m southwest of the Château Fort crater. During the flyby, around 8:40 a.m. local time, activity focused on two main eruptive vents in which several regimes of lava fountains were observed. The upstream part of the crack is no longer active. The lava fountains did not exceed thirty meters in height. The flow had traveled about a mile to the east